A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data

被引:36
|
作者
Park, Doori [1 ,3 ]
Park, Su-Hyun [2 ,6 ]
Ban, Yong Wook [1 ,4 ]
Kim, Youn Shic [2 ]
Park, Kyoung-Cheul [1 ,5 ]
Nam-Soo Kim [3 ]
Kim, Ju-Kon [2 ]
Choi, Ik-Young [1 ,5 ]
机构
[1] Kangwon Natl Univ, Dept Agr & Life Ind, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[2] Seoul Natl Univ, Inst GreenBio Sci & Technol, Grad Sch Int Agr Technol & Crop Biotech, 1447 Pyeongchang, Gangwon 25354, South Korea
[3] Kangwon Natl Univ, Dept Mol Biosci, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[4] Kangwon Natl Univ, Dept Forest Resources, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[5] Kangwon Natl Univ, Bioherb Res Inst, 1 Kangwondaehak Gil, Chunchon 24341, Gangwon, South Korea
[6] Rockefeller Univ, Lab Plant Mol Biol, 1230 York Ave, New York, NY 10065 USA
来源
BMC BIOTECHNOLOGY | 2017年 / 17卷
关键词
Genetically modified organism (GMO); GM rice; Next-generation sequencing (NGS); Molecular characterization; GM safety; Bioinformatics;
D O I
10.1186/s12896-017-0386-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. Methods: To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Results: Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. Conclusion: NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost-and time-effective methods for assessing the safety of transgenic plants.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Population Genomics of American Mink Using Whole Genome Sequencing Data
    Karimi, Karim
    Ngoc Do, Duy
    Sargolzaei, Mehdi
    Miar, Younes
    GENES, 2021, 12 (02) : 1 - 18
  • [42] A paired-end whole-genome sequencing approach enables comprehensive characterization of transgene integration in rice
    Wenting Xu
    Hanwen Zhang
    Yuchen Zhang
    Ping Shen
    Xiang Li
    Rong Li
    Litao Yang
    Communications Biology, 5
  • [43] Identifying tagged transposon insertion sites in yeast by direct genomic sequencing
    Horecka, J
    Jigami, Y
    YEAST, 2000, 16 (10) : 967 - 970
  • [44] Evaluation of whole genome sequencing utility in identifying driver alterations in cancer genome
    Nagashima, Takeshi
    Yamaguchi, Ken
    Urakami, Kenichi
    Shimoda, Yuji
    Ohnami, Sumiko
    Ohshima, Keiichi
    Tanabe, Tomoe
    Naruoka, Akane
    Kamada, Fukumi
    Serizawa, Masakuni
    Hatakeyama, Keiichi
    Ohnami, Shumpei
    Maruyama, Koji
    Mochizuki, Tohru
    Mizuguchi, Maki
    Shiomi, Akio
    Ohde, Yasuhisa
    Bando, Etsuro
    Sugiura, Teiichi
    Mukaigawa, Takashi
    Nishimura, Seiichiro
    Hirashima, Yasuyuki
    Mitsuya, Koichi
    Yoshikawa, Shusuke
    Kiyohara, Yoshio
    Tsubosa, Yasuhiro
    Katagiri, Hirohisa
    Niwakawa, Masashi
    Takahashi, Kaoru
    Kashiwagi, Hiroya
    Yasunaga, Yoshichika
    Ishida, Yuji
    Sugino, Takashi
    Kenmotsu, Hirotsugu
    Terashima, Masanori
    Takahashi, Mitsuru
    Uesaka, Katsuhiko
    Akiyama, Yasuto
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [45] A whole-genome approach to identifying protein binding sites: promoters in Methanocaldococcus (Methanococcus) jannaschii
    Li, Enhu
    Reich, Claudia I.
    Olsen, Gary J.
    NUCLEIC ACIDS RESEARCH, 2008, 36 (22) : 6948 - 6958
  • [46] PennCNV in whole-genome sequencing data
    Lima, Leandro de Araujo
    Wang, Kai
    BMC BIOINFORMATICS, 2017, 18
  • [47] PennCNV in whole-genome sequencing data
    Leandro de Araújo Lima
    Kai Wang
    BMC Bioinformatics, 18
  • [48] Identifying Genes Involved in Common Variable Immune Deficiency Disorders: An Integrated Whole Genome Sequencing and RNA Sequencing Approach
    van Schouwenburg, P. A.
    Davenport, E. E.
    Kienzler, A. K.
    Marwah, I.
    Wright, B.
    Lucas, M.
    Martin, H.
    Chapel, H.
    Knight, J. C.
    Patel, S. Y.
    JOURNAL OF CLINICAL IMMUNOLOGY, 2014, 34 : S489 - S490
  • [49] Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis
    Savage, Abigail L.
    Iacoangeli, Alfredo
    Schumann, Gerald G.
    Rubio-Roldan, Alejandro
    Garcia-Perez, Jose L.
    Al Khleifat, Ahmad
    Koks, Sulev
    Bubb, Vivien J.
    Al-Chalabi, Ammar
    Quinn, John P.
    GENE, 2022, 843
  • [50] A bioinformatics pipeline for estimating mitochondrial DNA copy number and heteroplasmy levels from whole genome sequencing data
    Battle, Stephanie L.
    Puiu, Daniela
    Boerwinkle, Eric
    Taylor, Kent D.
    Rotter, Jerome, I
    Rich, Stephan S.
    Grove, Megan L.
    Pankratz, Nathan
    Fetterman, Jessica L.
    Liu, Chunyu
    Arking, Dan E.
    Verlouw, Joost
    Broer, Linda
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (02)