An experimental-numerical study of active cooling in wire arc additive manufacturing

被引:83
|
作者
Hackenhaar, William [1 ]
Mazzaferro, Jose A. E. [1 ]
Montevecchi, Filippo [2 ]
Campatelli, Gianni [2 ]
机构
[1] Fed Univ Rio Grande do Sul UFRGS PROMEC, Welding & Related Tech Lab, Porto Alegre, RS, Brazil
[2] Univ Firenze, Dept Ind Engn, Via Santa Marta 3, I-50139 Florence, Italy
关键词
Wire arc additive manufacturing; Air jet impingement; Idle time; MECHANICAL-PROPERTIES; DISTORTION PREDICTION; PROCESS PARAMETERS; HEAT-TRANSFER; MICROSTRUCTURE; DEPOSITION; COMPONENTS; SURFACE; PARTS;
D O I
10.1016/j.jmapro.2020.01.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) is a metal additive manufacturing process based on gas metal arc welding and it is known to be economically convenient for large metal parts with low complexity. The main issue WAAM is the sensibility to heat accumulation, i.e., a progressive increase in the internal energy of the workpiece due to the high heat input of the deposition process, that is responsible of excessive remelting of the lower layers and the related change in bead geometry. A promising technique to mitigate such issue is to use an air jet impinging on the deposited material to increase the rate of convective heat transfer. This paper presents an analysis of air jet impingement performances by means of a hybrid numerical-experimental approach. Different samples are manufactured using AWS ER70S-6 as filler material, using as cooling approaches free convection and air jet impingement, with different interlayer idle times. The measurement of substrate temperatures has been used to validate the process simulation, used for obtaining the temperature field of the whole part. The results indicate that air jet impingement has a significant impact on the process, limiting the progressive increase in the interlayer temperature as compared to free convection cooling. From the results arise that the optimal idle time is 30 s, as a compromise between productivity and reduction of heat accumulation, independently from the cooling strategy.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 50 条
  • [41] Wire and Arc Additive Manufacturing of Aluminum Components
    Koehler, Markus
    Fiebig, Sierk
    Hensel, Jonas
    Dilger, Klaus
    METALS, 2019, 9 (05)
  • [42] Experimental study on structural parameters of wire arc additive manufacturing on nickel based alloy using argon arc welding
    Kiran, Bandaru
    Rajyalakshmi, G.
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2020, 82 (03): : 167 - 178
  • [43] Experimental investigation of CMT discontinuous wire arc additive manufacturing of Inconel 625
    Votruba, Vojtech
    Divis, Ivan
    Pilsova, Lucie
    Zeman, Pavel
    Beranek, Libor
    Horvath, Jakub
    Smolik, Jan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 122 (02): : 711 - 727
  • [44] Experimental Investigation of the Influence of Wire Arc Additive Manufacturing on the Machinability of Titanium Parts
    Alonso, Unai
    Veiga, Fernando
    Suarez, Alfredo
    Artaza, Teresa
    METALS, 2020, 10 (01)
  • [45] Experimental investigation of CMT discontinuous wire arc additive manufacturing of Inconel 625
    Vojtěch Votruba
    Ivan Diviš
    Lucie Pilsová
    Pavel Zeman
    Libor Beránek
    Jakub Horváth
    Jan Smolík
    The International Journal of Advanced Manufacturing Technology, 2022, 122 : 711 - 727
  • [46] A Finite Element Study of Wire Arc Additive Manufacturing of Aluminum Alloy
    Han, Yousung
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [47] WIRE ARC ADDITIVE MANUFACTURING COMPARED TO CONVENTIONAL SUBTRACTIVE MANUFACTURING
    Petruse, Radu Emanuil
    Trifu, Andrei-Dorin
    Bondrea, Ioan
    ACTA TECHNICA NAPOCENSIS SERIES-APPLIED MATHEMATICS MECHANICS AND ENGINEERING, 2024, 67 (01): : 353 - 362
  • [48] Parametric study of residual stress formation in Wire and Arc Additive Manufacturing
    Abusalma, H.
    Eisazadeh, H.
    Hejripour, F.
    Bunn, J.
    Aidun, D. K.
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 75 : 863 - 876
  • [49] Wire and Arc Additive Manufacturing (WAAM) - A New Advance in Manufacturing
    Knezovic, Nikola
    Topic, Angela
    NEW TECHNOLOGIES, DEVELOPMENT AND APPLICATION, 2019, 42 : 65 - 71
  • [50] Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing
    樊世龙
    杨飞
    朱晓楠
    刁兆炜
    陈琳
    荣命哲
    Plasma Science and Technology, 2022, 24 (04) : 4 - 15