Fractional Langevin equations of distributed order

被引:74
|
作者
Eab, C. H. [1 ]
Lim, S. C. [2 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Chem, Bangkok 10330, Thailand
[2] Multimedia Univ Malaysia, Fac Engn, Cyberjaya 63100, Selangor, Malaysia
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 03期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALK; VARIABLE ORDER; DISCRETE; MODELS;
D O I
10.1103/PhysRevE.83.031136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Distributed-order fractional Langevin-like equations are introduced and applied to describe anomalous diffusion without unique diffusion or scaling exponent. It is shown that these fractional Langevin equations of distributed order can be used to model the kinetics of retarding subdiffusion whose scaling exponent decreases with time and the strongly anomalous ultraslow diffusion with mean square displacement which varies asymptotically as a power of logarithm of time.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Distributed Solving Linear Algebraic Equations with Switched Fractional Order Dynamics
    Yu, Wenqiang
    Cheng, Songsong
    He, Shuping
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (02) : 613 - 631
  • [32] On Strongly Continuous Resolving Families of Operators for Fractional Distributed Order Equations
    Fedorov, Vladimir E.
    Filin, Nikolay V.
    FRACTAL AND FRACTIONAL, 2021, 5 (01)
  • [33] Distributed-order wave equations with composite time fractional derivative
    Tomovski, Zivorad
    Sandev, Trifce
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1100 - 1113
  • [34] A novel Legendre operational matrix for distributed order fractional differential equations
    Pourbabaee, Marzieh
    Saadatmandi, Abbas
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 215 - 231
  • [35] Distributed Solving Linear Algebraic Equations with Switched Fractional Order Dynamics
    YU Wenqiang
    CHENG Songsong
    HE Shuping
    Journal of Systems Science & Complexity, 2023, 36 (02) : 613 - 631
  • [36] An efficient nonpolynomial spline method for distributed order fractional subdiffusion equations
    Li, Xuhao
    Wong, Patricia J. Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) : 4906 - 4922
  • [37] Restrictions in a distributed complex fractional order linear constitutive equations of viscoelasticity
    Atanackovic, Teodor M.
    Janev, Marko
    Pilipovic, Stevan
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 456
  • [38] Numerical solution of distributed order fractional differential equations by hybrid functions
    Mashayekhi, S.
    Razzaghi, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 315 : 169 - 181
  • [39] ANALYTIC STUDY ON LINEAR SYSTEMS OF DISTRIBUTED ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Sheikhani, A. Refahi
    Najafi, H. Saberi
    Ansari, Alireza
    Mehrdoust, Farshid
    MATEMATICHE, 2012, 67 (02): : 3 - 13
  • [40] Extremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
    Noroozi, Hossein
    Ansari, Alireza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2013, 1 (02): : 120 - 134