Fractional Langevin equations of distributed order

被引:74
|
作者
Eab, C. H. [1 ]
Lim, S. C. [2 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Chem, Bangkok 10330, Thailand
[2] Multimedia Univ Malaysia, Fac Engn, Cyberjaya 63100, Selangor, Malaysia
来源
PHYSICAL REVIEW E | 2011年 / 83卷 / 03期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALK; VARIABLE ORDER; DISCRETE; MODELS;
D O I
10.1103/PhysRevE.83.031136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Distributed-order fractional Langevin-like equations are introduced and applied to describe anomalous diffusion without unique diffusion or scaling exponent. It is shown that these fractional Langevin equations of distributed order can be used to model the kinetics of retarding subdiffusion whose scaling exponent decreases with time and the strongly anomalous ultraslow diffusion with mean square displacement which varies asymptotically as a power of logarithm of time.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fractional relaxation equations of distributed order
    Stojanovic, Mirjana
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 939 - 946
  • [2] Presentation of solutions of impulsive fractional Langevin equations and existence resultsImpulsive fractional Langevin equations
    J. Wang
    M. Fec̆kan
    Y. Zhou
    The European Physical Journal Special Topics, 2013, 222 : 1857 - 1874
  • [3] Non local coupled system for ψ-Hilfer fractional order Langevin equations
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Thaiprayoon, Chatthai
    AIMS MATHEMATICS, 2021, 6 (09): : 9731 - 9756
  • [4] Ψ- HILFER FRACTIONAL-ORDER LANGEVIN EQUATIONS: EXISTENCE AND UNIQUENESS REVISITED
    Rathee, Savita
    Narwal, Yogeeta
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 16 (03): : 13 - 27
  • [5] Nonlocal boundary value problems for ψ-Hilfer fractional-order Langevin equations
    Cholticha Nuchpong
    Sotiris K. Ntouyas
    Devaraj Vivek
    Jessada Tariboon
    Boundary Value Problems, 2021
  • [6] On Existence and Attractivity of ψ-Hilfer Hybrid Fractional-order Langevin Differential Equations
    Rathee, Savita
    Narwal, Yogeeta
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [7] Nonlocal boundary value problems for ψ-Hilfer fractional-order Langevin equations
    Nuchpong, Cholticha
    Ntouyas, Sotiris K.
    Vivek, Devaraj
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [8] Distributed solving Sylvester equations with fractional order dynamics
    Cheng, Songsong
    Liang, Shu
    Fan, Yuan
    CONTROL THEORY AND TECHNOLOGY, 2021, 19 (02) : 249 - 259
  • [9] Stability Analysis of Distributed Order Fractional Differential Equations
    Najafi, H. Saberi
    Sheikhani, A. Refahi
    Ansari, A.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [10] Distributed solving Sylvester equations with fractional order dynamics
    Songsong Cheng
    Shu Liang
    Yuan Fan
    Control Theory and Technology, 2021, 19 : 249 - 259