LINEAR STABILITY OF PARTITIONED RUNGE-KUTTA METHODS

被引:15
|
作者
McLachlan, R. I. [1 ]
Sun, Y. [2 ]
Tse, P. S. P. [2 ]
机构
[1] Massey Univ, IFS, Palmerston North, New Zealand
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
asymptotic behavior; continued fractions; linear stability; Lobatto IIIA-IIIB methods; Pade approximants; trace of stability matrix; HAMILTONIAN-SYSTEMS; INTEGRATORS; SCHEMES; ORDER;
D O I
10.1137/100787234
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the linear stability of partitioned Runge-Kutta (PRK) methods applied to linear separable Hamiltonian ODEs and to the semidiscretization of certain Hamiltonian PDEs. We extend the work of Jay and Petzold [Highly Oscillatory Systems and Periodic Stability, Preprint 95-015, Army High Performance Computing Research Center, Stanford, CA, 1995] by presenting simplified expressions of the trace of the stability matrix, tr M-s, for the Lobatto IIIA-IIIB family of symplectic PRK methods. By making the connection to Pade approximants and continued fractions, we study the asymptotic behavior of tr M-s(w) as a function of the frequency w and stage number s.
引用
收藏
页码:232 / 263
页数:32
相关论文
共 50 条
  • [31] Efficient implementation of partitioned stiff exponential Runge-Kutta methods
    Narayanamurthi, Mahesh
    Sandu, Adrian
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 : 141 - 158
  • [32] Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
    Jay, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 368 - 387
  • [34] Efficient implementation of partitioned stiff exponential Runge-Kutta methods
    Narayanamurthi, Mahesh
    Sandu, Adrian
    arXiv, 2019,
  • [35] Partitioned Runge-Kutta methods as phase volume preserving integrators
    Suris, YB
    PHYSICS LETTERS A, 1996, 220 (1-3) : 63 - 69
  • [36] Partitioned Krylov subspace iteration in implicit Runge-Kutta methods
    Dekker, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 488 - 494
  • [37] Partitioned Runge-Kutta methods in Lie-group setting
    Engo, K
    BIT NUMERICAL MATHEMATICS, 2003, 43 (01) : 21 - 39
  • [38] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [39] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [40] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420