Crown ether modified poly(hydroquinone)/carbon nanotubes based electrochemical sensor for simultaneous determination of levodopa, uric acid, tyrosine and ascorbic acid in biological fluids

被引:39
|
作者
Atta, Nada F. [1 ]
Galal, Ahmed [1 ]
El-Gohary, Asmaa R. [1 ]
机构
[1] Cairo Univ, Fac Sci, Chem Dept, Giza 12613, Egypt
关键词
Levodopa; Uric acid; Tyrosine; Ascorbic acid; Parkinson's disease; Benzo-12-crown-4; Hydroquinone polymer; Carbon nanotubes; GLASSY-CARBON ELECTRODE; VITAMIN-C SUPPLEMENTATION; L-DOPA; ULTRASENSITIVE DETERMINATION; VOLTAMMETRIC DETERMINATION; SELECTIVE DETERMINATION; PASTE ELECTRODE; SERUM; COMPOSITE; NANOPARTICLES;
D O I
10.1016/j.jelechem.2020.114032
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Tyrosine (Ty) is an important amino acid that converts to levodopa (L-DOPA) which is used for treatment of Parkinson's disease (PD). Also, there is a correlation between UAlevels and the risk of progression of PDas significantly low level of serum uric acid (UA) is a biomarker for Parkinson. Thus, it is important to detect L-DOPA and UA in presence of interfering compounds for monitoring PD disease. An electrochemical sensor is fabricated by the modification of glassy carbon electrode with successive layers of carbon nanotubes (CNT), poly(hydroquinone) (PHQ) and benzo12-crown-4 (CE) for the simultaneous determination of L-DOPA, UA and Ty in biological fluids. CE is introduced for the first time as a receptor for L-DOPA, UA, Ty and ascorbic acid (AA). Stable host-guest complexes are formed between CE and these biologically compounds. L-DOPA, UA, Ty and AA are determined in the concentration ranges of 0.005-20 mu M, 0.005-25 mu M, 0.03-170 mu M and 0.1-50 mu M with detection limit values of 0.221 nM, 0.769 nM, 1.31 nM and 3.32 nM, respectively. Furthermore, the sensor possessed excellent anti-interference capability for simultaneous determination of L-DOPA, UA, Ty and AA or folic acid (FA). Recovery tests of the studied compounds were attained with excellent results. (c)(C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid
    Sheng, Zhen-Huan
    Zheng, Xiao-Qing
    Xu, Jian-Yun
    Bao, Wen-Jing
    Wang, Feng-Bin
    Xia, Xing-Hua
    BIOSENSORS & BIOELECTRONICS, 2012, 34 (01): : 125 - 131
  • [22] Simultaneous Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Based on Nitrogen Doped Carbon Sphere Modified Glassy Carbon Electrode
    Ye, Fucheng
    Wen, Zubiao
    Wu, Hongfu
    Wang, Chunyan
    Qian, Yong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (02): : 1136 - 1143
  • [23] Simultaneous electrochemical determination of norepinephrine, ascorbic acid and uric acid using a graphene modified glassy carbon electrode
    Xinying Ma
    Mingyong Chao
    Meifeng Chen
    Russian Journal of Electrochemistry, 2014, 50 : 154 - 161
  • [24] Simultaneous electrochemical determination of norepinephrine, ascorbic acid and uric acid using a graphene modified glassy carbon electrode
    Ma, Xinying
    Chao, Mingyong
    Chen, Meifeng
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2014, 50 (02) : 154 - 161
  • [25] Simultaneous electrochemical determination of uric acid and ascorbic acid on a glassy carbon electrode modified with cobalt(II) tetrakisphenylporphyrin
    Li, CX
    Zeng, YL
    Liu, YJ
    Tang, CR
    ANALYTICAL SCIENCES, 2006, 22 (03) : 393 - 397
  • [26] Simultaneous Electrochemical Determination of Uric Acid and Ascorbic Acid on a Glassy Carbon Electrode Modified with Cobalt(II) Tetrakisphenylporphyrin
    Chun-Xiang Li
    Yun-Long Zeng
    Ying-Ju Liu
    Chun-Rang Tang
    Analytical Sciences, 2006, 22 : 393 - 397
  • [27] A Carbon-Black-Doped Molybdenite-Based Electrochemical Sensor for Simultaneous Determination of Uric Acid, Dopamine, and Ascorbic Acid
    Ma, Tingting
    Wang, Yue
    Hasebe, Yasushi
    Zhang, Zhiqiang
    CHEMISTRYSELECT, 2023, 8 (18):
  • [28] Simultaneous Determination of Dopamine, Ascorbic Acid and Uric Acid at Poly (Crystal Violet) Modified Carbon Paste Electrode
    Shankar, Sharath S.
    Swamy, Bahaddurghatta E. Kumara
    Chandra, Umesh
    Sherigara, Bailure S.
    ANALYTICAL & BIOANALYTICAL ELECTROCHEMISTRY, 2011, 3 (05): : 462 - 477
  • [29] Simultaneous determination of doparnine, ascorbic acid and uric acid at poly (Evans Blue) modified glassy carbon electrode
    Lin, Liqing
    Chen, Jinghua
    Yao, Hong
    Chen, Yuanzhong
    Zheng, Yanjie
    Lin, Xinhua
    BIOELECTROCHEMISTRY, 2008, 73 (01) : 11 - 17
  • [30] Simultaneous electrochemical detection of uric acid and ascorbic acid at a silver doped poly(glutamic acid) modified glassy carbon electrode
    Sun, D. M.
    Hu, W. N.
    Ma, W.
    JOURNAL OF ANALYTICAL CHEMISTRY, 2011, 66 (03) : 310 - 316