Connecting face hitting sets in planar graphs

被引:5
|
作者
Schweitzer, Pascal [1 ]
Schweitzer, Patrick [2 ]
机构
[1] Max Planck Inst Comp Sci, D-66123 Saarbrucken, Germany
[2] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, L-1359 Luxembourg, Luxembourg
关键词
Combinatorial problems; Planar graph; Face hitting set;
D O I
10.1016/j.ipl.2010.10.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that any face hitting set of size n of a connected planar graph with a minimum degree of at least 3 is contained in a connected subgraph of size 5n - 6. Furthermore we show that this bound is tight by providing a lower bound in the form of a family of graphs. This improves the previously known upper and lower bound of 11n - 18 and 3n respectively by Grigoriev and Sitters. Our proof is valid for simple graphs with loops and generalizes to graphs embedded in surfaces of arbitrary genus. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [21] DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS
    Kleist, Linda
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2018, 9 (01) : 290 - 311
  • [22] ON OBSTRUCTIONS TO SMALL FACE COVERS IN PLANAR GRAPHS
    BIENSTOCK, D
    DEAN, N
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 55 (02) : 163 - 189
  • [23] Drawing Planar Graphs with Prescribed Face Areas
    Kleist, Linda
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2016, 2016, 9941 : 158 - 170
  • [24] A Framework for Parameterized Subexponential Algorithms for Generalized Cycle Hitting Problems on Planar Graphs
    Marx, Daniel
    Misra, Pranabendu
    Neuen, Daniel
    Tale, Prafullkumar
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2085 - 2127
  • [25] Hitting all maximum stable sets in P5-free graphs
    Hajebi, Sepehr
    Li, Yanjia
    Spirkl, Sophie
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 165 : 142 - 163
  • [26] Bounded-degree independent sets in planar graphs
    Biedl, T
    Wilkinson, DF
    THEORY OF COMPUTING SYSTEMS, 2005, 38 (03) : 253 - 278
  • [27] Bounded-Degree Independent Sets in Planar Graphs
    Therese Biedl
    Dana F. Wilkinson
    Theory of Computing Systems, 2005, 38 : 253 - 278
  • [28] Planar zero divisor graphs of partially ordered sets
    M. Afkhami
    Z. Barati
    K. Khashyarmanesh
    Acta Mathematica Hungarica, 2012, 137 : 27 - 35
  • [29] Planar zero divisor graphs of partially ordered sets
    Afkhami, M.
    Barati, Z.
    Khashyarmanesh, K.
    ACTA MATHEMATICA HUNGARICA, 2012, 137 (1-2) : 27 - 35
  • [30] Bounded-degree independent sets in planar graphs
    Biedl, T
    Wilkinson, DF
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 416 - 427