A novel cluster validity criterion for fuzzy C-regression model clustering algorithm

被引:0
|
作者
Kung, CC [1 ]
Hung, JC [1 ]
机构
[1] Tatung Univ, Dept Elect Engn, Taipei, Taiwan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel cluster validity criterion for the fuzzy e-regression model (FCRM) clustering algorithm. The goal of the proposed cluster validity criterion is to decide the appropriate number of clusters in a FCRM. The simulation results demonstrate its validness and effectiveness.
引用
收藏
页码:1368 / 1373
页数:6
相关论文
共 50 条
  • [31] On robust fuzzy c-regression models
    Leski, Jacek M.
    Kotas, Marian
    FUZZY SETS AND SYSTEMS, 2015, 279 : 112 - 129
  • [32] A novel validity indice for fuzzy C-means clustering algorithm
    Li, Jing
    Qian, Xuezhong
    Journal of Computational Information Systems, 2013, 9 (23): : 9679 - 9688
  • [33] A novel validity index in fuzzy clustering algorithm
    Feng Z.
    Fan J.-C.
    Fan, Jian-Cong (fanjiancong@sdust.edu.cn), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10): : 183 - 190
  • [34] A novel cluster validity index for fuzzy C-means algorithm
    Yang, Shuling
    Li, Kangshun
    Liang, Zhengping
    Li, Wei
    Xue, Yu
    SOFT COMPUTING, 2018, 22 (06) : 1921 - 1931
  • [35] A novel cluster validity index for fuzzy C-means algorithm
    Shuling Yang
    Kangshun Li
    Zhengping Liang
    Wei Li
    Yu Xue
    Soft Computing, 2018, 22 : 1921 - 1931
  • [36] Fuzzy c-Regression Models for Fuzzy Numbers on a Graph
    Higuchi, Tatsuya
    Miyamoto, Sadaaki
    Endo, Yasunori
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2016, 20 (04) : 521 - 534
  • [37] An accelerating method for fuzzy c-regression models
    Yang, XB
    Kong, FS
    Liu, BH
    Meng, LL
    CONCURRENT ENGINEERING: THE WORLDWIDE ENGINEERING GRID, PROCEEDINGS, 2004, : 717 - 721
  • [38] Alternative Fuzzy c-Regression Models with Tolerance
    Iwata, Shunsuke
    Honda, Katsuhiro
    Notsu, Akira
    2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 501 - 505
  • [39] Fuzzy c-Regression Models Combined with Support Vector Regression
    Higuchi, Tatsuya
    Miyamoto, Sadaaki
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2489 - 2493
  • [40] Uncertainty Bounds of Fuzzy C-Regression Method
    Celikyilmaz, Asli
    Turksen, I. Burhan
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 1195 - +