A novel cluster validity criterion for fuzzy C-regression model clustering algorithm

被引:0
|
作者
Kung, CC [1 ]
Hung, JC [1 ]
机构
[1] Tatung Univ, Dept Elect Engn, Taipei, Taiwan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel cluster validity criterion for the fuzzy e-regression model (FCRM) clustering algorithm. The goal of the proposed cluster validity criterion is to decide the appropriate number of clusters in a FCRM. The simulation results demonstrate its validness and effectiveness.
引用
收藏
页码:1368 / 1373
页数:6
相关论文
共 50 条
  • [1] A Novel Cluster Validity Criterion for Fuzzy C-Regression Models
    Kung, Chung-Chun
    Su, Jui-Yiao
    Nieh, Yi-Fen
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1885 - +
  • [2] Fuzzy c-regression model with a new cluster validity criterion
    Kung, CC
    Lin, CC
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1499 - 1504
  • [3] Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion
    Kung, C. C.
    Su, J. Y.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (05): : 1255 - 1265
  • [4] A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm
    Kung, Chung-Chun
    Su, Jui-Yiao
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 1898 - 1903
  • [5] A new cluster validity criterion for fuzzy C-regression model and its application to T-S fuzzy model identification
    Kung, CC
    Lin, CC
    2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 1673 - 1678
  • [6] A modified clustering algorithm for fuzzy modeling using fuzzy C-regression model
    Zhao, Ni
    Sun, Fu-Chun
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 140 - +
  • [7] T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
    Li, Chaoshun
    Zhou, Jianzhong
    Xiang, Xiuqiao
    Li, Qingqing
    An, Xueli
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (4-5) : 646 - 653
  • [8] Evolving Fuzzy-Model-based on c-Regression Clustering
    Skrjanc, Igor
    Dovzan, Dejan
    Gomide, Fernando
    2014 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2014,
  • [9] Block Sparse Representations in Modified Fuzzy C-Regression Model Clustering Algorithm for TS Fuzzy Model Identification
    Dam, Tanmoy
    Deb, Alok Kanti
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 1687 - 1694
  • [10] A novel T-S fuzzy particle filtering algorithm based on fuzzy C-regression clustering
    Wang, Xiao-li
    Li, Liang-qun
    Xie, Wei-xin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 117 : 81 - 95