Parameter estimation using chaotic time series

被引:22
|
作者
Annan, JD
机构
[1] Japan Agcy Marine Earth Sci & Technol, Frontier Res Ctr Global Change, Kanazawa Ku, Kanagawa 2360001, Japan
[2] Proudman Oceanog Lab, Liverpool L3 5DA, Merseyside, England
关键词
D O I
10.1111/j.1600-0870.2005.00143.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We show how the response of a chaotic model to temporally varying external forcing can be efficiently tuned via parameter estimation using time series data, extending previous work in which an unforced climatologically steady state was used as the tuning target. Although directly fitting a long trajectory of a chaotic deterministic model to a time series of data is generally not possible even in principle, this is not actually necessary for useful prediction on climatological time-scales. If the model and data outputs are averaged over suitable time-scales, the effect of chaotic variability is effectively converted into nothing more troublesome than some statistical noise. We show how tuning of models to unsteady time series data can be efficiently achieved with an augmented ensemble Kalman filter, and we demonstrate the procedure with application to a forced version of the Lorenz model. The computational cost is of the order of 100 model integrations, and so the method should be directly applicable to more sophisticated climate models of at least moderate resolution.
引用
收藏
页码:709 / 714
页数:6
相关论文
共 50 条
  • [31] The Multiscale Parameter Estimation Methods for a Sort of Time Series
    Wen Chenglin
    Wang Songwei
    Wen Chuanbo
    Chen Zhiguo
    CHINESE JOURNAL OF ELECTRONICS, 2009, 18 (04): : 660 - 664
  • [32] Sparse Parameter Estimation in Economic Time Series Models
    Tonner, Jaromir
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2005, 2005, : 390 - 395
  • [33] The Multiscale parameter estimation methods for a sort of time series
    Wen, Chenglin
    Wang, Songwei
    Wen, Chuanbo
    Chen, Zhiguo
    Chinese Journal of Electronics, 2009, 18 (04): : 660 - 664
  • [34] Sparse Parameter Estimation in Overcomplete Time Series Models
    Vesely, Vitezslav
    Tonner, Jaromir
    AUSTRIAN JOURNAL OF STATISTICS, 2006, 35 (2-3) : 371 - 378
  • [35] Prediction of the chaotic time series from parameter-varying systems using artificial neural networks
    Wang Yong-Sheng
    Sun Jin
    Wang Chang-Jin
    Fan Hong-Da
    ACTA PHYSICA SINICA, 2008, 57 (10) : 6120 - 6131
  • [36] Parameter joint estimation of phase space reconstruction in chaotic time series based on radial basis function neural networks
    Chen Di-Yi
    Liu Ye
    Ma Xiao-Yi
    ACTA PHYSICA SINICA, 2012, 61 (10)
  • [37] Parameter and state estimation of experimental chaotic systems using synchronization
    Quinn, John C.
    Bryant, Paul H.
    Creveling, Daniel R.
    Klein, Sallee R.
    Abarbanel, Henry D. I.
    PHYSICAL REVIEW E, 2009, 80 (01)
  • [38] Embedding dimension estimation of high dimensional chaotic time series using distributed time delay neural network
    Parizangeneh, Maryam}
    Ataei, Mohammad
    Moallem, Peyman
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS THEORY AND SCIENTIFIC COMPUTATION (ISTAC'08): NEW ASPECTS OF SYSTEMS THEORY AND SCIENTIFIC COMPUTATION, 2008, : 284 - +
  • [39] Short time prediction of chaotic time series using ANFIS
    Valyrakis, M.
    Diplas, P.
    Dancey, C. L.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 729 - 733
  • [40] Optimal Parameter Estimation of Transmission Line Using Chaotic Initialized Time-Varying PSO Algorithm
    Shoukat, Abdullah
    Mughal, Muhammad Ali
    Gondal, Saifullah Younus
    Umer, Farhana
    Ejaz, Tahir
    Hussain, Ashiq
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 269 - 285