On the convergence of random polynomials and multilinear forms

被引:1
|
作者
Carando, Daniel [2 ,3 ]
Dimant, Veronica [3 ,4 ]
Pinasco, Damian [1 ,3 ]
机构
[1] Univ T Di Tella, Dept Matemat & Estadist, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[4] Univ San Andres, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Polynomials in random variables; Multilinear forms in random variables; Polynomial Khintchine inequalities; DECOUPLING INEQUALITIES; RANDOM-VARIABLES; BANACH-SPACES; THEOREM;
D O I
10.1016/j.jfa.2011.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider different kinds of convergence of homogeneous polynomials and multilinear forms in random variables. We show that for a variety of complex random variables, the almost sure convergence of the polynomial is equivalent to that of the multilinear form, and to the square summability of the coefficients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables. All these results have no analogues in the real case. Moreover, we study the L(p)-convergence of random polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also consider convergence on "full subspaces" in the sense of Sjogren, both for real and complex random variables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link with the theory of homogeneous polynomials on Banach spaces. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2135 / 2163
页数:29
相关论文
共 50 条
  • [41] Representing integers by multilinear polynomials
    Boettcher, Albrecht
    Fukshansky, Lenny
    RESEARCH IN NUMBER THEORY, 2020, 6 (04)
  • [42] Congruence of multilinear forms
    Belitskii, Genrich R.
    Sergeichuk, Vladimir V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 751 - 762
  • [43] On discriminants of multilinear forms
    Dolotin, VV
    IZVESTIYA MATHEMATICS, 1998, 62 (02) : 215 - 245
  • [44] CONTRACTION OF MULTILINEAR FORMS
    OKEEFFE, JD
    MATRIX AND TENSOR QUARTERLY, 1977, 27 (04): : 141 - 144
  • [45] Geometry of multilinear forms
    Cavalcante, W., V
    Pellegrino, D. M.
    Teixeira, E., V
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (02)
  • [46] MULTILINEAR BACKPROPAGATION CONVERGENCE THEOREM
    CARMESIN, HO
    PHYSICS LETTERS A, 1994, 188 (01) : 27 - 31
  • [47] MULTILINEAR PERCEPTRON CONVERGENCE THEOREM
    CARMESIN, HO
    PHYSICAL REVIEW E, 1994, 50 (01): : 622 - 624
  • [48] Approximating multilinear monomial coefficients and maximum multilinear monomials in multivariate polynomials
    Zhixiang Chen
    Bin Fu
    Journal of Combinatorial Optimization, 2013, 25 : 234 - 254
  • [49] Summability and estimates for polynomials and multilinear mappings
    Botelho, Geraldo
    Pellegrino, Daniel
    Rueda, Pilar
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (01): : 23 - 31
  • [50] On almost summing polynomials and multilinear mappings
    Pellegrino, Daniel
    Ribeiro, Joilson
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (04): : 397 - 413