WHIZARD-simulating multi-particle processes at LHC and ILC

被引:386
|
作者
Kilian, Wolfgang [1 ]
Ohl, Thorsten [2 ]
Reuter, Juergen [3 ,4 ,5 ]
机构
[1] Univ Siegen, Dept Phys, D-57068 Siegen, Germany
[2] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[3] DESY Hamburg, Theory Grp, D-22603 Hamburg, Germany
[4] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
[5] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
来源
EUROPEAN PHYSICAL JOURNAL C | 2011年 / 71卷 / 09期
关键词
MONTE-CARLO; AUTOMATIC-GENERATION; CHARGINO PRODUCTION; FEYNMAN-RULES; AMPLITUDES; FEYNARTS; DIAGRAMS; E(+)E(-); BOSONS; SUSY;
D O I
10.1140/epjc/s10052-011-1742-y
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe the universal Monte-Carlo (parton-level) event generator WHIZARD (http://whizard.eventgenerator.org), version 2. The program automatically computes complete tree-level matrix elements, integrates them over phase space, evaluates distributions of observables, and generates unweighted partonic event samples. These are showered and hadronized by calling external codes, either automatically from within the program or via standard interfaces. There is no conceptual limit on the process complexity; using current hardware, the program has successfully been applied to hard scattering processes with up to eight particles in the final state. Matrix elements are computed as helicity amplitudes, so spin and color correlations are retained. For event generation, processes can be concatenated with full spin correlation, so factorized approximations to cascade decays are possible when complete matrix elements are not desired. The Standard Model, the MSSM, and many alternative models such as Little Higgs, anomalous couplings, or effects of extra dimensions or non-commutative SM extensions have been implemented. Using standard interfaces to parton shower and hadronization programs, WHIZARD covers physics at hadron, lepton, and photon colliders.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [31] Multi-particle tracking in crowded environments
    Xu, Weiqing
    Sgouralis, Ioannis
    Kilic, Zeliha
    Presse, Steve
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 128A - 128A
  • [32] Multi-particle Dynamical Systems and Polynomials
    Demina, Maria V.
    Kudryashov, Nikolai A.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (03): : 351 - 366
  • [33] Multi-particle production and TMD distributions
    Hautmann, F.
    PROCEEDINGS OF THE 38TH INTERNATIONAL SYMPOSIUM ON MULTIPARTICLE DYNAMICS, 2009, : 284 - 290
  • [34] MULTI-PARTICLE TUNNELING BETWEEN SUPERCONDUCTORS
    ADKINS, CJ
    REVIEWS OF MODERN PHYSICS, 1964, 36 (1P1) : 211 - &
  • [35] On resonances in disordered multi-particle systems
    Chulaevsky, Victor
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 81 - 85
  • [36] Multi-particle diffusion limited aggregation
    Sidoravicius, Vladas
    Stauffer, Alexandre
    INVENTIONES MATHEMATICAE, 2019, 218 (02) : 491 - 571
  • [37] Multi-particle diffusion limited aggregation
    Vladas Sidoravicius
    Alexandre Stauffer
    Inventiones mathematicae, 2019, 218 : 491 - 571
  • [38] Symplectic multi-particle tracking on GPUs
    Liu, Zhicong
    Qiang, Ji
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 226 : 10 - 17
  • [39] MULTI-PARTICLE FIELDS AND HIGGS MECHANISM
    Merkotan, K. K.
    Zelentsova, T. M.
    Chudak, N. O.
    Ptashynskiy, D. A.
    Urbanevich, V. V.
    Potiienko, O. S.
    Voitenko, V. V.
    Berezovskyi, O. D.
    Sharph, I. V.
    Rusov, V. D.
    JOURNAL OF PHYSICAL STUDIES, 2018, 22 (03): : 3001 - 1
  • [40] Collisional cooling with multi-particle interactions
    Luding, S
    Goldshtein, A
    GRANULAR MATTER, 2003, 5 (03) : 159 - 163