Feature selection of spectral dimension by hyperspectral remote sensing images based on genetic algorithm and support vector machine

被引:0
|
作者
Li, Huan [1 ]
Luo, Hongxia [1 ]
Zhu, Zlyi [2 ]
机构
[1] SW Univ, Sch Geog Sci, Chongqing 400715, Peoples R China
[2] Southwest Univ, Fac Comp & Informat Sci, Chongqing 400715, Peoples R China
关键词
feature selection; structural risk minimization; support vector machine; directly objective optimization; AVIRIS;
D O I
10.1117/12.750090
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
An algorithm is presented for deriving an optimal features classified with a support vector machine. The approach is based on direct objective optimization which is approximated by the selection of appropriate features as the SVM learning predictor in a regularized learning framework. To process the regularized learning, a genetic method provides a learning rule for in an outer loop of an iteration, while at each iteration training predictor model using gradient descent is to gradually added the feature into improving the existing model. The inner loop is heuristic to perform support vector machine training and provide support vector coefficients on which the gradient descent depends. The experiment was conduced on the Airborne Visible/Infrared Imaging Spectrometer(AVIRIS) data for classification. The result shows that the feature selection of spectral dimension and support vector machine are jointly optimized.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A memetic algorithm with support vector machine for feature selection and classification
    Nekkaa, Messaouda
    Boughaci, Dalila
    MEMETIC COMPUTING, 2015, 7 (01) : 59 - 73
  • [32] A memetic algorithm with support vector machine for feature selection and classification
    Messaouda Nekkaa
    Dalila Boughaci
    Memetic Computing, 2015, 7 : 59 - 73
  • [33] Incremental classification algorithm of hyperspectral remote sensing images based on spectral-spatial information
    Wang, Junshu
    Jiang, Nan
    Zhang, Guoming
    Li, Yang
    Lü, Heng
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2015, 44 (09): : 1003 - 1013
  • [34] Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm
    Kari, Tusongjiang
    Gao, Wensheng
    Zhao, Dongbo
    Abiderexiti, Kaherjiang
    Mo, Wenxiong
    Wang, Yong
    Luan, Le
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (21) : 5672 - 5680
  • [35] Feature weighting algorithms for classification of hyperspectral images using a support vector machine
    Qi, Bin
    Zhao, Chunhui
    Yin, Guisheng
    APPLIED OPTICS, 2014, 53 (13) : 2839 - 2846
  • [36] Spectral feature extraction of hyperspectral remote sensing images based on class pair-weighted criterion
    Liu, Jing
    Li, Qingyan
    Liu, Yi
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [37] Support vector machine tree based on feature selection
    Xu, Qinzhen
    Pei, Wenjiang
    Yang, Luxi
    He, Zhenya
    NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 856 - 863
  • [38] Feature selection for support vector regression using a genetic algorithm
    Mckearnan, Shannon B.
    Vock, David M.
    Marai, G. Elisabeta
    Canahuate, Guadalupe
    Fuller, Clifton D.
    Wolfson, Julian
    BIOSTATISTICS, 2023, 24 (02) : 295 - 308
  • [39] Memetic Algorithm Based Feature Selection for Hyperspectral Images Classification
    Zhang, Mingyang
    Ma, Jingjing
    Gong, Maoguo
    Li, Hao
    Liu, Jia
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 495 - 502
  • [40] HSIAO Framework in Feature Selection for Hyperspectral Remote Sensing Images Based on Jeffries-Matusita Distance
    Li, Huiying
    Qi, Ailiang
    Chen, Huiling
    Chen, Shengbo
    Zhao, Dong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63