A new kind of nonlinear phenomenon in coupled fractional-order chaotic systems: coexistence of anti-phase and complete synchronization

被引:4
|
作者
Zhang Jun-Feng [1 ]
Pei Qiu-Yu [1 ]
Zhang Xiao-Li [1 ,2 ]
机构
[1] Henan Univ Urban Construct, Dept Comp Sci & Engn, Pingdingshan 467036, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Aeronaut Sci Key Lab Smart Mat & Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order unified chaotic system; hybrid synchronization; linear controller; single drive variable; ADAPTIVE SYNCHRONIZATION; PHASE SYNCHRONIZATION; CHEN SYSTEM;
D O I
10.1088/1674-1056/20/8/080503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have found a kind of interesting nonlinear phenomenon-hybrid synchronization in linearly coupled fractional-order chaotic systems. This new synchronization mechanism, i.e., part of state variables are anti-phase synchronized and part completely synchronized, can be achieved using a single linear controller with only one drive variable. Based on the stability theory of the fractional-order system, we investigated the possible existence of this new synchronization mechanism. Moreover, a helpful theorem, serving as a determinant for the gain of the controller, is also presented. Solutions of coupled systems are obtained numerically by an improved Adams-Bashforth-Moulton algorithm. To support our theoretical analysis, simulation results are given.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Synchronization of fractional-order chaotic systems based on the fractional-order sliding mode controller
    Yan Xiaomei
    Shang Ting
    Zhao Xiaoguo
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 429 - 434
  • [32] Adaptive synchronization of a class of fractional-order chaotic systems
    Ma Tie-Dong
    Jiang Wei-Bo
    Fu Jie
    Chai Yi
    Chen Li-Ping
    Xue Fang-Zheng
    ACTA PHYSICA SINICA, 2012, 61 (16)
  • [33] Synchronization of fractional-order chaotic systems with different structures
    Zhang Ruo-Xun
    Yang Shi-Ping
    ACTA PHYSICA SINICA, 2008, 57 (11) : 6852 - 6858
  • [34] Synchronization of fractional-order chaotic systems with uncertain parameters
    Zhang, Hong
    Pu, Qiumei
    ACHIEVEMENTS IN ENGINEERING MATERIALS, ENERGY, MANAGEMENT AND CONTROL BASED ON INFORMATION TECHNOLOGY, PTS 1 AND 2, 2011, 171-172 : 723 - 727
  • [35] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [36] Prescribed performance synchronization for fractional-order chaotic systems
    Liu Heng
    Li Sheng-Gang
    Sun Ye-Guo
    Wang Hong-Xing
    CHINESE PHYSICS B, 2015, 24 (09)
  • [37] GENERALIZED SYNCHRONIZATION OF NONIDENTICAL FRACTIONAL-ORDER CHAOTIC SYSTEMS
    Wang Xing-Yuan
    Hu Zun-Wen
    Luo Chao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (30):
  • [38] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [39] Prescribed performance synchronization for fractional-order chaotic systems
    刘恒
    李生刚
    孙业国
    王宏兴
    Chinese Physics B, 2015, (09) : 157 - 164
  • [40] The Synchronization of Three Fractional-Order Lorenz Chaotic Systems
    Yu, Yong-Guang
    Wen, Guo-Guang
    Li, Han-Xiong
    Diao, Miao
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (03) : 379 - 386