Preconditioned multiple-relaxation-time lattice Boltzmann equation model for incompressible flow in porous media

被引:11
|
作者
Meng, Xuhui [1 ,2 ]
Wang, Liang [3 ]
Yang, Xiaofan [1 ,2 ]
Guo, Zhaoli [2 ,4 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] North China Elect Power Univ, Res Ctr Engn Thermophys, Beijing 102206, Peoples R China
[4] Huazhong Univ Sci & Technol, State Key Lab Coal Combust, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
PORE-SCALE; SLOW FLOW; SCHEMES; ARRAY;
D O I
10.1103/PhysRevE.98.053309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An improved preconditioned multiple-relaxation-time lattice Boltzmann equation model for incompressible flow (IPMRT-LBE) in porous media is proposed. Motivated by previous LBE models [Guo et al., Phys. Rev. E70, 066706 (2004); Premnath et al., J. Comput. Phys. 228, 746 (2009); Guo et al., J. Comput. Phys. 165, 288 (2000)], the current model is demonstrated to have the advantages of accurate implementation of the no-slip boundary condition, reducing the compressible effect as well as fast convergence rate compared with standard LBE models. To validate the IPMRT-LBE model, flows in two-and three-dimensional synthetic porous media (square array of cylinders and body-centered cubic array of spheres) are simulated. The results show that the current model can predict the macroscopic property (such as permeability) accurately with significantly accelerated convergence rate. Furthermore, simulations of flow through a three-dimensional sandpack confirm the applicability and advantages of the IPMRT-LBE model.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
    Zhao, Wandong
    Zhang, Ying
    Xu, Ben
    Li, Peisheng
    Wang, Zhaotai
    Jiang, Shuisheng
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2018, 140 (08):
  • [22] An axisymmetric multiple-relaxation-time lattice Boltzmann scheme
    Xie, Wenjun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 55 - 66
  • [23] Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows
    Hu Jia-Yi
    Zhang Wen-Huan
    Chai Zhen-Hua
    Shi Bao-Chang
    Wang Yi-Hang
    ACTA PHYSICA SINICA, 2019, 68 (23)
  • [24] Multiple-relaxation-time lattice Boltzmann model for simulating double-diffusive convection in fluid-saturated porous media
    Liu, Qing
    He, Ya-Ling
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 497 - 502
  • [25] Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media
    Liu, Qing
    He, Ya-Ling
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 438 : 94 - 106
  • [26] Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows
    Liu, Qing
    He, Ya-Ling
    Li, Dong
    Li, Qing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 1334 - 1344
  • [27] Multiple-relaxation-time lattice Boltzmann model for generalized Newtonian fluid flows
    Chai, Zhenhua
    Shi, Baochang
    Guo, Zhaoli
    Rong, Fumei
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (5-6) : 332 - 342
  • [28] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    SongGui Chen
    QiCheng Sun
    Feng Jin
    JianGuo Liu
    Science China Physics, Mechanics and Astronomy, 2014, 57 : 532 - 540
  • [29] Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection-diffusion equation
    Cartalade, Alain
    Younsi, Amina
    Neel, Marie-Christine
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 : 40 - 54
  • [30] Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
    CHEN SongGui
    SUN QiCheng
    JIN Feng
    LIU JianGuo
    Science China(Physics,Mechanics & Astronomy), 2014, Mechanics & Astronomy)2014 (03) : 532 - 540