Isomonodromic tau function on the space of admissible covers

被引:22
|
作者
Kokotov, A. [1 ]
Korotkin, D. [1 ]
Zograf, P. [2 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
[2] VA Steklov Math Inst, St Petersburg 191023, Russia
基金
加拿大自然科学与工程研究理事会;
关键词
Hurwitz space; Tau function; Hodge class; Admissible covers; MODULI SPACE;
D O I
10.1016/j.aim.2011.02.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The isomonodromic tau function of the Fuchsian differential equations associated to Frobenius structures on Hurwitz spaces can be viewed as a section of a line bundle on the space of admissible covers. We study the asymptotic behavior of the tau function near the boundary of this space and compute its divisor. This yields an explicit formula for the pullback of the Hodge class to the space of admissible covers in terms of the classes of compactification divisors. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:586 / 600
页数:15
相关论文
共 50 条
  • [11] Accessory parameters in conformal mapping: exploiting the isomonodromic tau function for Painleve VI
    Anselmo, Tiago
    Nelson, Rhodri
    da Cunha, Bruno Carneiro
    Crowdy, Darren G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2216):
  • [12] Moment determinants as isomonodromic tau functions
    Bertola, M.
    NONLINEARITY, 2009, 22 (01) : 29 - 50
  • [13] Twisted bundles and admissible covers
    Abramovich, D
    Corti, A
    Vistoli, A
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) : 3547 - 3618
  • [14] The Dependence on the Monodromy Data of the Isomonodromic Tau Function (vol 294, pg 539, 2010)
    Bertola, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 1445 - 1461
  • [15] On the isomonodromic tau-function for the Hurwitz spaces of branched coverings of genus zero and one
    Kokotov, A
    Strachan, IAB
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 857 - 875
  • [16] On Some Hamiltonian Properties of the Isomonodromic Tau Functions
    Its, A. R.
    Prokhorov, A.
    REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (07)
  • [17] MONODROMY DEPENDENCE AND CONNECTION FORMULAE FOR ISOMONODROMIC TAU FUNCTIONS
    Its, A. R.
    Lisovyy, O.
    Prokhorov, A.
    DUKE MATHEMATICAL JOURNAL, 2018, 167 (07) : 1347 - 1432
  • [18] Boundedness of admissible area function on nonisotropic Lipschitz space
    Gao, JS
    Jia, HY
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1777 - 1785
  • [19] Partition functions for matrix models and isomonodromic tau functions
    Bertola, M
    Eynard, B
    Harnad, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3067 - 3083
  • [20] Intersections of loci of admissible covers with tautological classes
    Johannes Schmitt
    Jason van Zelm
    Selecta Mathematica, 2020, 26