Highly Sensitive Dual-core Photonic Crystal Fiber Based on a Surface Plasmon Resonance Sensor with Gold Film

被引:10
|
作者
Zhu, Meijun [1 ]
Yang, Lin [1 ]
Lv, Jingwei [1 ]
Liu, Chao [1 ]
Li, Qiao [1 ]
Peng, Chao [1 ]
Li, Xianli [1 ]
Chu, Paul K. [2 ,3 ]
机构
[1] Northeast Petr Univ, Sch Phys & Elect Engn, Daqing 163318, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Dept Mat Sci & Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Dept Biomed Engn, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface plasmon resonance; Photonic crystal fiber; Finite element method; Refractive index; Gold film; REFRACTIVE-INDEX SENSOR; SPR SENSOR; BIOSENSOR; DESIGN;
D O I
10.1007/s11468-021-01543-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A highly sensitive surface plasmon resonance (SPR) sensor comprising a dual-core photonic crystal fiber (PCF) is designed to detect minute changes in analyte refractive indices (RIs) between 1.33 and 1.42. In order to simplify the fabrication process and analytical protocol, a gold film is deposited on the external surface of the fiber to excite surface plasmon polaritons (SPPs). The larger diameter air holes are used in the photonic crystal fiber (PCF) cladding, which not only simplifies the actual production, but also makes the energy of the core more concentrated, and can more fully generate surface plasmon resonance with surface plasmon polaritons (SPPs). The dual-core PCF-SPR sensor is analyzed by the finite-element method (FEM), and the various structural parameters are investigated systematically and optimized. The optimized PCF-SPR sensor shows a maximum wavelength sensitivity of 29,500 nm/RIU and resolution of 3.39 x 10(-6) RIU.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 50 条
  • [31] Quad core gold coated photonic crystal fiber temperature sensor based on surface plasmon resonance
    Karim, M. D. Shahriar
    Hossin, Sazzad
    Alam, Md. Rafiul
    Siddik, Md. Abu Bakar
    Aktar, Mst. Rubina
    Ahmed, Nawshad
    Shakh, Md. Abdullah Noman
    SENSING AND BIO-SENSING RESEARCH, 2023, 39
  • [32] An ultrahighly sensitive photonic crystal fiber based surface plasmon resonance sensor
    Fu, Yongbo
    Liu, Min
    Shum, Ping
    Chu, Lihua
    OPTIK, 2020, 212
  • [33] Dual core photonic crystal fiber based surface plasmon resonance biosensor
    Paul, Alok Kumar
    Sarkar, Ajay Krishno
    Islam, Md Hafizul
    Morshed, Monir
    OPTIK, 2018, 170 : 400 - 408
  • [34] Dual-core photonic crystal fiber based surface plasmon resonance for refractive index and temperature sensing and polarization filtering
    Ullah, Sajid
    Chen, Hailiang
    Li, Kaifeng
    Pei, Menglei
    Hu, Linchuan
    Zhang, Sa
    Wang, Chun
    Guo, Pengxiao
    Li, Shuguang
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [35] Tunable surface plasmon resonance polarization beam splitter based on dual-core photonic crystal fiber with magnetic fluid
    Wang, Haiyang
    Yan, Xin
    Li, Shuguang
    Zhang, Xuenan
    OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (11)
  • [36] Tunable surface plasmon resonance polarization beam splitter based on dual-core photonic crystal fiber with magnetic fluid
    Haiyang Wang
    Xin Yan
    Shuguang Li
    Xuenan Zhang
    Optical and Quantum Electronics, 2017, 49
  • [37] Surface plasmon resonance (SPR) based temperature and magnetic field sensor in a dual-core D-shaped photonic crystal fiber (PCF)
    Wang, Jia-Kai
    Ying, Yu
    Gao, Zhi-Jun
    Cheng, Si-Yu
    Si, Guang-Yuan
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2021, 50 (03) : 271 - 287
  • [38] Surface Plasmon Resonance Sensor Based on Dual-core Photonic Crystal Fiber for Low Refractive Index Detection in Mid-infrared Spectrum
    Hao Dan
    Wang Jian-shuai
    Xie Yu-heng
    Zhu Ke
    Xue Zhuang-zhuang
    ACTA PHOTONICA SINICA, 2020, 49 (06)
  • [39] Pressure/Temperature Sensor Based on a Dual-Core Photonic Crystal Fiber
    Chen, Daru
    Hua, Gufeng
    Chen, Lingxia
    PASSIVE COMPONENTS AND FIBER-BASED DEVICES VIII, 2011, 8307
  • [40] Pressure/Temperature Sensor Based on a Dual-Core Photonic Crystal Fiber
    Chen, Daru
    Hu, Gufeng
    Chen, Lingxia
    2011 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE AND EXHIBITION (ACP), 2012,