An Ant Particle Filter for Visual Tracking

被引:0
|
作者
Wang, Fasheng [1 ,2 ]
Lin, Baowei [1 ]
Li, Xucheng [2 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian, Peoples R China
[2] Dalian Neusoft Univ Informat, Dept Software Engn, Dalian, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MARKOV-CHAIN; ESTIMATOR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sequential Monte Carlo method (also named as particle filter) is now a standard framework for solving nonlinear/non-Gaussian problems, especially in computer vision fields. This paper proposes an ant colony optimization (ACO) based iterative particle filter for visual tracking. In the proposed tracking method, the basic idea of ACO is used to simulate the behavior of particle moving toward the posterior density. Such idea is incorporated into the particle filtering framework in order to overcome the well-known problem of particle impoverishment. We design an iterative proposal distribution for particle generation in order to generate better predicted sample states. The experimental results demonstrate that the proposed tracker shows better performance than the other trackers.
引用
收藏
页码:417 / 422
页数:6
相关论文
共 50 条
  • [41] Kernel particle filter: Iterative sampling for efficient visual tracking
    Chang, C
    Ansari, R
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 977 - 980
  • [42] A Geometric Particle Filter for Template-Based Visual Tracking
    Kwon, Junghyun
    Lee, Hee Seok
    Park, Frank C.
    Lee, Kyoung Mu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 625 - 643
  • [43] Remarkable local resampling based on particle filter for visual tracking
    Zhao, Zhiqiang
    Wang, Tianjiang
    Liu, Fang
    Choe, Gwangmin
    Yuan, Caihong
    Cui, Zongmin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (01) : 835 - 860
  • [44] Adaptive Ball Particle Filter and its Application to Visual Tracking
    Xia, Yu
    Wu, Xiao-jun
    IETE TECHNICAL REVIEW, 2015, 32 (06) : 462 - 470
  • [45] Convolutional Adaptive Particle Filter with Multiple Models for Visual Tracking
    Mozhdehi, Reza Jalil
    Reznichenko, Yevgeniy
    Siddique, Abubakar
    Medeiros, Henry
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 474 - 486
  • [46] An improved real visual tracking system using particle filter
    Fiyad, Hatem Mohammed Naguib
    Abdellatif, Ahmed Gamal
    Mahamoud, Adel Zaghloul
    Ahmed, Mostafa Mohamed
    Nasr, Mohamed E.
    Abdelsamie, Fathi Elsayed
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (11): : 164 - 169
  • [47] SVD Based Kalman Particle Filter for Robust Visual Tracking
    Zhang, Xiaoqin
    Hu, Weiming
    Zhao, Zixiang
    Wang, Yan-guo
    Li, Xi
    Wei, Qingdi
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3109 - 3112
  • [48] Multi-measurement fusion for visual tracking by particle filter
    Li, You
    Zhang, Heng
    Li, Li-Chun
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2007, 29 (05): : 26 - 30
  • [49] Visual target tracking based on multiple cues and particle filter
    Liu, Guixi
    Fan, Chunyu
    Gao, Enke
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-3, 2006, : 1483 - +
  • [50] Dynamic appearance model for particle filter based visual tracking
    Wang, Yuru
    Tang, Xianglong
    Cui, Qing
    PATTERN RECOGNITION, 2012, 45 (12) : 4510 - 4523