Exact solutions of the Schrodinger equation for an anharmonic potential in two dimensions

被引:6
|
作者
Singh, Ram Mehar [1 ]
机构
[1] Ch Devi Lal Univ, Dept Phys, Sirsa 125055, India
关键词
Schrodinger equation; Anharmonic potential; Ansatz parameters; WAVE-EQUATION;
D O I
10.1016/j.amc.2011.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Within the framework of ansatz method, we investigate the exact closed-form solutions of the time independent Schrodinger equation for a two-dimensional anharmonic potential having sextic-type anharmonicity [say V(x, y) = Sigma(6)(ij-0)a(ij)x(i)y(j), with 1 <= i + j <= 6]. By imposing few restrictions on ansatz parameters and at the cost of some constraints on potential parameters, the ground state as well as excited states solutions are obtained. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:6439 / 6445
页数:7
相关论文
共 50 条
  • [31] Exact solutions for the position-dependent effective mass Schrodinger equation using the analogy with a PT-symmetric invariant anharmonic potential
    Moayedi, SK
    Solimannejad, M
    Jalbout, AF
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (01) : 16 - 19
  • [32] SCHRODINGER-EQUATION WITH AN ANHARMONIC-OSCILLATOR POTENTIAL
    RADMORE, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (01): : 173 - 179
  • [33] ON EXACT-SOLUTIONS OF THE SCHRODINGER-EQUATION
    YANG, CL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13): : 2531 - 2540
  • [34] Exact solutions of the Schrodinger equation for Manning-Rosen plus Yamaguchi potential
    Sahoo, P.
    Laha, U.
    PHYSICA SCRIPTA, 2021, 96 (09)
  • [35] Exact Solutions of 3-Dimensional Schrodinger Equation with a Coupled Quartic Potential
    Bhardwaj, S. B.
    Singh, Ram Mehar
    JOURNAL OF ADVANCED PHYSICS, 2016, 5 (01) : 44 - 46
  • [36] Exact solutions of the Schrodinger equation for the pseudoharmonic potential: an application to some diatomic molecules
    Oyewumi, K. J.
    Sen, K. D.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (05) : 1039 - 1059
  • [37] Exact solutions to a nonlinearly dispersive Schrodinger equation
    Geng, Yixiang
    Li, Jibin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 420 - 439
  • [38] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657
  • [39] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [40] Exact solutions of the Schrodinger equation for zero energy
    Pade, J.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 53 (01): : 41 - 50