GLOBAL EXISTENCE AND SCATTERING OF EQUIVARIANT DEFOCUSING CHERN-SIMONS-SCHRODINGER SYSTEM

被引:0
|
作者
Yuan, Jianjun [1 ]
机构
[1] Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210046, Peoples R China
关键词
Chern-Simons-Schrodinger; concentration compactness; profile decomposition; scatter; global existence; WELL-POSEDNESS; NORMALIZED SOLUTIONS; ENERGY SPACE; BLOW-UP; EQUATIONS;
D O I
10.3934/dcds.2020237
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following equivariant defocusing Chern-Simons-Schrodinger system, i partial derivative(t)phi + Delta phi = 2m/r(2) A(theta)phi + A(0)phi + 1/r(2) A(theta)(2)phi - lambda vertical bar phi vertical bar(p-2)phi, partial derivative(r)A(0) = 1/r (m + A(theta)) vertical bar phi vertical bar(2), partial derivative(t)A(theta) = rIm((phi) over bar partial derivative(r)phi), partial derivative(r)A(theta) = --1/2 vertical bar phi vertical bar(2)r, A(r) = 0. where phi(t, x(1), x(2)) : R1+2 -> R is a complex scalar field, A mu(t , x(1), x(2)) : R1+2 -> R is the gauge field for mu = 0, 1, 2, A(r) = x(1)/vertical bar x vertical bar A(1) + x(2)/vertical bar x vertical bar A(2), A(theta) = - x(2)A(1) + x(1)A(2), lambda < 0 and p > 4. When p > 4, the system is in the mass supercritical and energy subcrtical range. By using the conservation law of the system and the concentration compactness method introduced in [17], we show that the solution of the system exists globally and scatters.
引用
收藏
页码:5541 / 5570
页数:30
相关论文
共 50 条
  • [31] Two Normalized Solutions for the Chern-Simons-Schrodinger System with Exponential Critical Growth
    Yao, Shuai
    Chen, Haibo
    Sun, Juntao
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [32] The Existence and Concentration of Ground State Solutions for Chern-Simons-schrodinger Systems with a Steep Well Potential
    Tan, Jinlan
    Li, Yongyong
    Tang, Chunlei
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1125 - 1140
  • [33] Blow-up solutions of the Chern-Simons-Schrodinger equations
    Huh, Hyungjin
    NONLINEARITY, 2009, 22 (05) : 967 - 974
  • [34] A multiplicity result for Chern-Simons-Schrodinger equation with a general nonlinearity
    Cunha, Patricia L.
    d'Avenia, Pietro
    Pomponio, Alessio
    Siciliano, Gaetano
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06): : 1831 - 1850
  • [35] Existence of bound state solutions for the generalized Chern-Simons-Schrodinger system in H1(R2)
    Liang, Wenning
    Zhai, Chengbo
    APPLIED MATHEMATICS LETTERS, 2020, 100 (100)
  • [36] Chern-Simons-Schrodinger theory on a one-dimensional lattice
    Huh, Hyungjin
    Hussain, Swaleh
    Pelinovsky, Dmitry E.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (08) : 2221 - 2244
  • [37] Reduction of Chern-Simons-Schrodinger Systems in One Space Dimension
    Huh, Hyungjin
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [38] Normalized solutions for Chern-Simons-Schrodinger system with mixed dispersion and critical exponential growth
    Wei, Chenlu
    Wen, Lixi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1256 - 1280
  • [39] Existence of ground state solutions for the modified Chern-Simons-Schrodinger equations with general Choquard type nonlinearity
    Xiao, Yingying
    Zhu, Chuanxi
    Xie, Li
    AIMS MATHEMATICS, 2022, 7 (04): : 7166 - 7176
  • [40] Large data well-posedness in the energy space of the Chern-Simons-Schrodinger system
    Lim, Zhuo Min
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2553 - 2597