Boosting technique for combining Cellular GP classifiers

被引:0
|
作者
Folino, G [1 ]
Pizzuti, C [1 ]
Spezzano, G [1 ]
机构
[1] Univ Calabria, ICAR CNR, DEIS, I-87036 Arcavacata Di Rende, CS, Italy
来源
GENETIC PROGRAMMING, PROCEEDINGS | 2004年 / 3003卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An extension of Cellular Genetic Programming for data classification with the boosting technique is presented and a comparison with the bagging-like majority voting approach is performed. The method is able to deal with large data sets that do not fit in main memory since each classifier is trained on a subset of the overall training data. Experiments showed that, by using a sample of reasonable size, the extension with these voting algorithms enhances classification accuracy at a much lower computational cost.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 50 条
  • [21] Combining boosting machine learning and swarm intelligence for real time object detection and tracking: towards new meta-heuristics boosting classifiers
    Benabderrahmane S.
    International Journal of Intelligent Robotics and Applications, 2017, 1 (4) : 410 - 428
  • [22] LocalBoost: A Parallelizable Approach to Boosting Classifiers
    Carlos Valle
    Ricardo Ñanculef
    Héctor Allende
    Claudio Moraga
    Neural Processing Letters, 2019, 50 : 19 - 41
  • [23] Supervised projection approach for boosting classifiers
    Garcia-Pedrajas, Nicolas
    PATTERN RECOGNITION, 2009, 42 (09) : 1742 - 1760
  • [24] On the rate of convergence of regularized boosting classifiers
    Blanchard, G
    Lugosi, G
    Vayatis, N
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 4 (05) : 861 - 894
  • [25] Boosting algorithm for LVQ ATR classifiers
    Lim, S
    Nasrabadi, NM
    Mersereau, RM
    AUTOMATIC TARGET RECOGNITION XII, 2002, 4726 : 193 - 202
  • [26] Improving genetic classifiers with a boosting algorithm
    Liu, B
    McKay, B
    Abbass, HA
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2596 - 2602
  • [27] Boosting classifiers for music genre classification
    Bagci, Ulas
    Erzin, Engin
    2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 214 - +
  • [28] LocalBoost: A Parallelizable Approach to Boosting Classifiers
    Valle, Carlos
    Nanculef, Ricardo
    Allende, Hector
    Moraga, Claudio
    NEURAL PROCESSING LETTERS, 2019, 50 (01) : 19 - 41
  • [29] Boosting classifiers for music genre classification
    Bagci, U
    Erzin, E
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2005, PROCEEDINGS, 2005, 3733 : 575 - 584
  • [30] Bagging and Boosting with Dynamic Integration of Classifiers
    Tsymbal, Alexey
    Puuronen, Seppo
    LECTURE NOTES IN COMPUTER SCIENCE <D>, 2000, 1910 : 116 - 125