Notes on Kahler-Ricci Flow

被引:3
|
作者
Tian, Gang [1 ,2 ]
机构
[1] Beijing Normal Univ, Beijing, Peoples R China
[2] Princeton Univ, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
来源
关键词
MINIMAL ALGEBRAIC-VARIETIES; MONGE-AMPERE EQUATION; 1ST CHERN CLASS; EINSTEIN METRICS; GENERAL TYPE; MANIFOLDS; SURFACES; CURVATURE;
D O I
10.1007/978-3-319-42351-7_4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In these notes some aspects of the Analytic Minimal Model Program through Kahler-Ricci flow which was initiated by J. Song and the author are discussed. Some open problems will be also presented.
引用
收藏
页码:105 / 136
页数:32
相关论文
共 50 条
  • [1] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [2] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [3] Convergence of a Kahler-Ricci flow
    Sesum, N
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [4] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [5] A modified Kahler-Ricci flow
    Zhang, Zhou
    MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [6] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188
  • [7] Monotonicity and Kahler-Ricci flow
    Ni, L
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 149 - 165
  • [8] On convergence of the Kahler-Ricci flow
    Munteanu, Ovidiu
    Szekelyhidi, Gabor
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (05) : 887 - 903
  • [9] Hyperbolic Kahler-Ricci flow
    Xu Chao
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3027 - 3036
  • [10] ON THE WEAK KAHLER-RICCI FLOW
    Chen, X. X.
    Tian, G.
    Zhang, Z.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 2849 - 2863