Electrical determination of bandgap narrowing in bipolar transistors with epitaxial Si, epitaxial Si1-XGeX, and ion implanted bases

被引:17
|
作者
Ashburn, P [1 ]
Boussetta, H [1 ]
Hashim, MDR [1 ]
Chantre, A [1 ]
Mouis, M [1 ]
Parker, GJ [1 ]
Vincent, G [1 ]
机构
[1] FRANCE TELECOM,CTR NATL ETUD TELECOMMUN,F-38243 MEYLAN,FRANCE
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/16.491255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The apparent bandgap narrowing in bipolar transistors with epitaxial Si, epitaxial SiGe and ion implanted bases is measured from the temperature dependence of the collector current density J(c)(T). A graph of lnJ(c)(T)/J(o)(T) as a function of reciprocal temperature is plotted, and the apparent bandgap narrowing obtained from the slope. For epitaxial bare transistors, in which the boron base profiles are abrupt, a linear J(c)(T)/J(o)(T) characteristic is obtained, which allows the unambiguous determination of the apparent bandgap narrowing, The measured values for epitaxial Si bases are in good agreement with the theoretical model of Klaassen over a range of base doping concentrations. For Si0.88Ge0.12 and Si0.87Ge0.13 epitaxial base heterojunction bipolar transistors (HBT's), values of bandgap narrowing of 119 and 121 meV are obtained due to the presence of the Ge, which can be compared with theoretical values of 111 and 118 meV. For the implanted base transistor, the J(c)(T)/J(o)(T) characteristic is not linear, and its slope is larger at high temperatures than at low, This behavior is explained by the presence of a tail on the ion implanted profile, which dominates the Gummel number of the transistor at low temperatures.
引用
收藏
页码:774 / 783
页数:10
相关论文
共 50 条
  • [31] Use of narrow collector layers in Si and Si1-xGex bipolar transistors
    Leong, WY
    Churchill, AC
    Robbins, DJ
    Lambert, A
    THIN SOLID FILMS, 1997, 294 (1-2) : 274 - 277
  • [33] Secondary ion mass spectroscopy ultrashallow depth profiling for Si/Si1-xGex/Si heterojunction bipolar transistors
    Kruger, D
    Kurps, R
    Heinemann, B
    Herzel, F
    Zeindl, HP
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (01): : 287 - 293
  • [34] STRUCTURE OF EPITAXIAL LAYERS OF GAAS/SI1-XGEX GROWN ON SI(001) SEEDS
    VDOVIN, VI
    NOVIKOVA, EN
    MILVIDSKII, MG
    MITIN, VV
    TARASOVA, OA
    YUGOVA, TG
    KRISTALLOGRAFIYA, 1990, 35 (04): : 974 - 979
  • [35] RADIATIVE RECOMBINATION IN MBE-PREPARED EPITAXIAL SI AND SI1-XGEX LAYERS
    NORTHROP, GA
    WOLFORD, DJ
    IYER, SS
    SOLID STATE COMMUNICATIONS, 1991, 79 (02) : 161 - 165
  • [36] Si/Si1-xGex epitaxial layers and superlattices. Growth and structural characteristics
    Sizov, FF
    Kladko, VP
    Plyatsko, SV
    Shevlyakov, AP
    Kozyrev, YN
    Ogenko, VM
    SEMICONDUCTORS, 1997, 31 (08) : 786 - 788
  • [37] Molecular-dynamics simulation of Si1-xGex epitaxial growth on Si(100)
    Xu, JL
    Feng, JY
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2004, 217 (01): : 33 - 38
  • [38] INVESTIGATION OF THE SUBSTRATE EPITAXIAL INTERFACE OF SI/SI1-XGEX LAYERS GROWN BY LPCVD
    LOO, R
    VESCAN, L
    DIEKER, C
    FREUNDT, D
    HARTMANN, A
    MUCK, A
    JOURNAL DE PHYSIQUE IV, 1995, 5 (C5): : 895 - 903
  • [39] COMPARISON OF BORON-DIFFUSION IN SI AND STRAINED SI1-XGEX EPITAXIAL LAYERS
    KUO, P
    HOYT, JL
    GIBBONS, JF
    TURNER, JE
    JACOWITZ, RD
    KAMINS, TI
    APPLIED PHYSICS LETTERS, 1993, 62 (06) : 612 - 614
  • [40] DIFFUSION OF ION-IMPLANTED SN IN SI, SI1-XGEX, AND GE
    KRINGHOJ, P
    ELLIMAN, RG
    APPLIED PHYSICS LETTERS, 1994, 65 (03) : 324 - 326