Machine learning based algorithms for uncertainty quantification in numerical weather prediction models

被引:26
|
作者
Moosavi, Azam [1 ]
Rao, Vishwas [2 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Comp Sci, Computat Sci Lab, Blacksburg, VA 24060 USA
[2] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
关键词
Numerical weather prediction model; Precipitation prediction; Physical processes; Machine learning; CONVECTIVE PARAMETERIZATION; BULK PARAMETERIZATION; DATA ASSIMILATION; ERROR ESTIMATION; PRECIPITATION; MICROPHYSICS; IMPACT;
D O I
10.1016/j.jocs.2020.101295
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Complex numerical weather prediction models incorporate a variety of physical processes, each described by multiple alternative physical schemes with specific parameters. The selection of the physical schemes and the choice of the corresponding physical parameters during model configuration can significantly impact the accuracy of model forecasts. There is no combination of physical schemes that works best for all times, at all locations, and under all conditions. It is therefore of considerable interest to understand the interplay between the choice of physics and the accuracy of the resulting forecasts under different conditions. This paper demonstrates the use of machine learning techniques to study the uncertainty in numerical weather prediction models due to the interaction of multiple physical processes. The first problem addressed herein is the estimation of systematic model errors in output quantities of interest at future times, and the use of this information to improve the model forecasts. The second problem considered is the identification of those specific physical processes that contribute most to the forecast uncertainty in the quantity of interest under specified meteorological conditions. In order to address these questions we employ two machine learning approaches, random forests and artificial neural networks. The discrepancies between model results and observations at past times are used to learn the relationships between the choice of physical processes and the resulting forecast errors. Numerical experiments are carried out with the Weather Research and Forecasting (WRF) model. The output quantity of interest is the model precipitation, a variable that is both extremely important and very challenging to forecast. The physical processes under consideration include various micro-physics schemes, cumulus parameterizations, short wave, and long wave radiation schemes. The experiments demonstrate the strong potential of machine learning approaches to aid the study of model errors.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Stock Price Prediction Based on Machine Learning Algorithms
    Wang, Hanchen
    MODERN INDUSTRIAL IOT, BIG DATA AND SUPPLY CHAIN, IIOTBDSC 2020, 2021, 218 : 111 - 118
  • [42] Rockburst prediction based on nine machine learning algorithms
    Tang Z.
    Xu Q.
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (04): : 773 - 781
  • [43] Machine Learning for Applied Weather Prediction
    Haupt, Sue Ellen
    Cowie, Jim
    Linden, Seth
    McCandless, Tyler
    Kosovic, Branko
    Alessandrini, Stefano
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE 2018), 2018, : 276 - 277
  • [44] Resource Quality Prediction Based on Machine Learning Algorithms
    Wang, Yu
    Yang, Dingyu
    Shi, Yunfan
    Wang, Yizhen
    Chen, Wanli
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1541 - 1545
  • [45] Weather based wheat yield prediction using machine learning
    Gupta, Shreya
    Vashisth, Ananta
    Krishnan, P.
    Lama, Achal
    SHIVPRASAD
    Aravind, K. S.
    MAUSAM, 2024, 75 (03): : 639 - 648
  • [46] Tongue Disease Prediction Based on Machine Learning Algorithms
    Hassoon, Ali Raad
    Al-Naji, Ali
    Khalid, Ghaidaa A.
    Chahl, Javaan
    TECHNOLOGIES, 2024, 12 (07)
  • [47] The Prediction of Wear Depth Based on Machine Learning Algorithms
    Zhu, Chenrui
    Jin, Lei
    Li, Weidong
    Han, Sheng
    Yan, Jincan
    LUBRICANTS, 2024, 12 (02)
  • [48] Cybersecurity and Risk Prediction Based on Machine Learning Algorithms
    Yang, Haoliang
    Zhu, Jianan
    Li, Jiaqing
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [49] Optimizing Numerical Weather Prediction Model Performance Using Machine Learning Techniques
    Choi, Soohyuck
    Jung, Eun-Sung
    IEEE ACCESS, 2023, 11 : 86038 - 86055
  • [50] Day-Ahead Forecasting for the Tropics with Numerical Weather Prediction and Machine Learning
    Ng, Nigel Yuan Yun
    Gopalan, Harish
    Raghavan, Venugopalan S. G.
    Ooi, Chin Chun
    2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 125 - 130