Quantum Entropy and Complexity

被引:0
|
作者
Benatti, F. [1 ,2 ]
Oskouei, S. Khabbazi [3 ]
Abad, A. Shafiei Deh [4 ]
机构
[1] Univ Trieste, Dipartimento Fis, I-34151 Trieste, Italy
[2] Sez Trieste, Ist Nazl Fis Nucl, I-34151 Trieste, Italy
[3] Islamic Azad Univ, Dept Math, Varamin Pishva Branch, Tehran 338177489, Iran
[4] Univ Tehran, Dept Math, Sch Math Stat & Comp Sci, Coll Sci, Tehran, Iran
来源
OPEN SYSTEMS & INFORMATION DYNAMICS | 2017年 / 24卷 / 02期
关键词
Identical particles; entanglement; correlation functions; KOLMOGOROV COMPLEXITY;
D O I
10.1142/S1230161217500056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relations between the recently proposed machine-independent quantum complexity of P. Gacs [1] and the entropy of classical and quantum systems. On one hand, by restricting Gacs complexity to ergodic classical dynamical systems, we retrieve the equality between the Kolmogorov complexity rate and the Shannon entropy rate derived by A. A. Brudno [2]. On the other hand, using the quantum Shannon-McMillan theorem [3], we show that such an equality holds densely in the case of ergodic quantum spin chains.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Deterministic complexity and entropy
    Titchener, MR
    Gulliver, A
    Nicolescu, R
    Speidel, U
    Staiger, L
    FUNDAMENTA INFORMATICAE, 2005, 64 (1-4) : 443 - 461
  • [22] Multiscale complexity/entropy
    Bar-Yam, Y
    ADVANCES IN COMPLEX SYSTEMS, 2004, 7 (01): : 47 - 63
  • [23] Complexity and efficiency of minimum entropy production probability paths from quantum dynamical evolutions
    Cafaro, Carlo
    Ray, Shannon
    Alsing, Paul M.
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [24] Entropy of Entropy: Measurement of Dynamical Complexity for Biological Systems
    Hsu, Chang Francis
    Wei, Sung-Yang
    Huang, Han-Ping
    Hsu, Long
    Chi, Sien
    Peng, Chung-Kang
    ENTROPY, 2017, 19 (10)
  • [25] On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy
    Morzy, Mikolaj
    Kajdanowicz, Tomasz
    Kazienko, Przemyslaw
    COMPLEXITY, 2017,
  • [26] Edge entropy and visual complexity
    Moos, P
    Lewis, JP
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 419 - 424
  • [27] Complexity and Entropy in Legal Language
    Friedrich, Roland
    FRONTIERS IN PHYSICS, 2021, 9
  • [28] On joint conditional complexity (Entropy)
    Vereshchagin, Nikolay K.
    Muchnik, Andrej A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 274 (01) : 90 - 104
  • [29] On joint conditional complexity (Entropy)
    Nikolay K. Vereshchagin
    Andrej A. Muchnik
    Proceedings of the Steklov Institute of Mathematics, 2011, 274 : 90 - 104
  • [30] Relating description complexity to entropy
    Jaakkola, Reijo
    Kuusisto, Antti
    Vilander, Miikka
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2025, 149