Quantum Entropy and Complexity

被引:0
|
作者
Benatti, F. [1 ,2 ]
Oskouei, S. Khabbazi [3 ]
Abad, A. Shafiei Deh [4 ]
机构
[1] Univ Trieste, Dipartimento Fis, I-34151 Trieste, Italy
[2] Sez Trieste, Ist Nazl Fis Nucl, I-34151 Trieste, Italy
[3] Islamic Azad Univ, Dept Math, Varamin Pishva Branch, Tehran 338177489, Iran
[4] Univ Tehran, Dept Math, Sch Math Stat & Comp Sci, Coll Sci, Tehran, Iran
来源
OPEN SYSTEMS & INFORMATION DYNAMICS | 2017年 / 24卷 / 02期
关键词
Identical particles; entanglement; correlation functions; KOLMOGOROV COMPLEXITY;
D O I
10.1142/S1230161217500056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the relations between the recently proposed machine-independent quantum complexity of P. Gacs [1] and the entropy of classical and quantum systems. On one hand, by restricting Gacs complexity to ergodic classical dynamical systems, we retrieve the equality between the Kolmogorov complexity rate and the Shannon entropy rate derived by A. A. Brudno [2]. On the other hand, using the quantum Shannon-McMillan theorem [3], we show that such an equality holds densely in the case of ergodic quantum spin chains.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Entropy type complexity of quantum processes
    Watanabe, Noboru
    PHYSICA SCRIPTA, 2014, T163
  • [2] Quantum Query Complexity of Entropy Estimation
    Li, Tongyang
    Wu, Xiaodi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 2899 - 2921
  • [3] Entropy Type Complexity in Quantum Systems
    Watanabe, Noboru
    ADVANCES IN QUANTUM THEORY, 2011, 1327 : 289 - 297
  • [4] Entropy and algorithmic complexity in quantum information theory
    Benatti F.
    Natural Computing, 2007, 6 (2) : 133 - 150
  • [5] Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno’s Theorem
    Fabio Benatti
    Tyll Krüger
    Markus Müller
    Rainer Siegmund-Schultze
    Arleta Szkoła
    Communications in Mathematical Physics, 2006, 265 : 437 - 461
  • [6] Wigner separability entropy and complexity of quantum dynamics
    Benenti, Giuliano
    Carlo, Gabriel G.
    Prosen, Tomaz
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [7] Invariant correlational entropy and complexity of quantum states
    Sokolov, Valentin V.
    Brown, B. Alex
    Zelevinsky, Vladimir
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (01):
  • [8] Entropy and quantum Kolmogorov complexity:: A quantum Brudno's theorem
    Benatti, Fabio
    Krueger, Tyll
    Mueller, Markus
    Siegmund-Schultze, Rainer
    Szkola, Arleta
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (02) : 437 - 461
  • [9] Invariant correlational entropy and complexity of quantum states
    Sokolov, VV
    Brown, BA
    Zelevinsky, V
    PHYSICAL REVIEW E, 1998, 58 (01) : 56 - 68
  • [10] Optimality, entropy and complexity for nonextensive quantum scattering
    Ion, DB
    Ion, MLD
    CHAOS SOLITONS & FRACTALS, 2002, 13 (03) : 547 - 568