Quantum phase transitions in the triangular-lattice bilayer Heisenberg model

被引:10
|
作者
Singh, RRP [1 ]
Elstner, N
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
关键词
D O I
10.1103/PhysRevLett.81.4732
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the triangular-lattice bilayer Heisenberg model with antiferromagnetic interplane coupling J(perpendicular to) and nearest-neighbor intraplane coupling J = lambda J(perpendicular to) by expansions in lambda. For negative lambda a phase transition is found to an ordered phase at a lambda(c) = -0.3636 +/- 0.0001, which is in the 3D classical Heisenberg universality class. For lambda > 0, we find a transition at a rather large lambda(c) approximate to 1.2. The universality class of the transition is consistent with that of Kawamura's 3D antiferromagnetic stacked triangular lattice. The spectral weight for the triplet excitations, at the ordering wave vector, remains finite at the transition, suggesting that a phase with free spinons does not exist in this model. [S0031-9007(98)07709-6].
引用
收藏
页码:4732 / 4735
页数:4
相关论文
共 50 条
  • [31] Phase Transitions in the Antiferromagnetic Heisenberg Model on a Layered Triangular Lattice with the Next-Nearest Neighbor Interactions
    Ramazanov, M. K.
    JETP LETTERS, 2011, 94 (04) : 311 - 314
  • [33] The anhydrous alums as model triangular-lattice magnets
    Bramwell, ST
    Carling, SG
    Harding, CJ
    Harris, KDM
    Kariuki, BM
    Nixon, L
    Parkin, IP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (09) : L123 - L129
  • [34] Quantum spin liquid with emergent chiral order in the triangular-lattice Hubbard model
    Chen, Bin-Bin
    Chen, Ziyu
    Gong, Shou-Shu
    Sheng, D. N.
    Li, Wei
    Weichselbaum, Andreas
    PHYSICAL REVIEW B, 2022, 106 (09)
  • [35] Vacancy diffusion in the triangular-lattice dimer model
    Jeng, Monwhea
    Bowick, Mark J.
    Krauth, Werner
    Schwarz, J. M.
    Xing, Xiangjun
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [36] Microscopic Model Calculations for the Magnetization Process of Layered Triangular-Lattice Quantum Antiferromagnets
    Yamamoto, Daisuke
    Marmorini, Giacomo
    Danshita, Ippei
    PHYSICAL REVIEW LETTERS, 2015, 114 (02)
  • [37] Anhydrous alums as model triangular-lattice magnets
    Bramwell, S.T.
    Carling, S.G.
    Harding, C.J.
    Harris, K.D.
    Kariuki, B.M.
    Nixon, L.
    Parkin, I.P.
    Journal of Physics Condensed Matter, 1996, 8 (09)
  • [38] Quantum spin fluctuations and ellipticity for a triangular-lattice antiferromagnet
    Fishman, Randy S.
    PHYSICAL REVIEW B, 2011, 84 (05):
  • [39] Interplay of anisotropy and frustration: Triple transitions in a triangular-lattice antiferromagnet
    Melchy, P. -E.
    Zhitomirsky, M. E.
    PHYSICAL REVIEW B, 2009, 80 (06):
  • [40] Spin-lattice decoupling in a triangular-lattice quantum spin liquid
    Takayuki Isono
    Shiori Sugiura
    Taichi Terashima
    Kazuya Miyagawa
    Kazushi Kanoda
    Shinya Uji
    Nature Communications, 9