Optimization of Deep Reinforcement Learning with Hybrid Multi-Task Learning

被引:1
|
作者
Varghese, Nelson Vithayathil [1 ]
Mahmoud, Qusay H. [1 ]
机构
[1] Ontario Tech Univ, Dept Elect Comp & Software Engn, Oshawa, ON L1G 0C5, Canada
关键词
deep reinforcement learning; transfer learning; multi-tasking; actor-mimic;
D O I
10.1109/SysCon48628.2021.9447080
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As an outcome of the technological advancements occurred within artificial intelligence (AI) domain in recent times, deep learning (DL) has been established its position as a prominent representation learning method for all forms of machine learning (ML), including the reinforcement learning (RL). Subsequently, leading to the evolution of deep reinforcement learning (DRL) which combines deep learning's high representational learning capabilities with current reinforcement learning methods. Undoubtedly, this new direction has caused a pivotal role towards the performance optimization of intelligent RL systems designed by following model-free based methodology. Optimization of the performance achieved with this methodology was majorly restricted to intelligent systems having reinforcement learning algorithms designed to learn single task at a time. Simultaneously, single task-based learning method was observed as quite less efficient in terms of data, especially when such intelligent systems required operate under too complex as well as data rich conditions. The prime reason for this was because of the restricted application of existing methods to wide range of scenarios, and associated tasks from those operating environments. One of the possible approaches to mitigate this issue is by adopting the method of multi-task learning. Objective of this research paper is to present a parallel multi-task learning (PMTL) approach for the optimization of deep reinforcement learning agents operating within two different by semantically similar environments with related tasks. The proposed framework will be built with multiple individual actor-critic models functioning within each environment and transferring the knowledge among themselves through a global network to optimize the performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Learning potential functions and their representations for multi-task reinforcement learning
    Snel, Matthijs
    Whiteson, Shimon
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2014, 28 (04) : 637 - 681
  • [32] Adversarial Online Multi-Task Reinforcement Learning
    Nguyen, Quan
    Mehta, Nishant A.
    Proceedings of Machine Learning Research, 2023, 201 : 1124 - 1165
  • [33] Decision making on robot with multi-task using deep reinforcement learning for each task
    Shimoguchi, Yuya
    Kurashige, Kentarou
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3460 - 3465
  • [34] Computational task offloading algorithm based on deep reinforcement learning and multi-task dependency
    Zhang, Xiaoqi
    Lin, Tengxiang
    Lin, Cheng-Kuan
    Chen, Zhen
    Cheng, Hongju
    THEORETICAL COMPUTER SCIENCE, 2024, 993
  • [35] Multi-Task Deep Reinforcement Learning for Terahertz NOMA Resource Allocation With Hybrid Discrete and Continuous Actions
    Hu, Zhifeng
    Han, Chong
    Deng, Yansha
    Wang, Xudong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11647 - 11663
  • [36] Multi-Asset Market Making via Multi-Task Deep Reinforcement Learning
    Haider, Abbas
    Hawe, Glenn, I
    Wang, Hui
    Scotney, Bryan
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 353 - 364
  • [37] Multi-Adaptive Optimization for multi-task learning with deep neural networks
    Hervella, alvaro S.
    Rouco, Jose
    Novo, Jorge
    Ortega, Marcos
    NEURAL NETWORKS, 2024, 170 : 254 - 265
  • [38] Sequence generation for multi-task scheduling in cloud manufacturing with deep reinforcement learning
    Ping, Yaoyao
    Liu, Yongkui
    Zhang, Lin
    Wang, Lihui
    Xu, Xun
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 67 : 315 - 337
  • [39] Deep Reinforcement Learning Based Multi-Task Automated Channel Pruning for DNNs
    Ma, Xiaodong
    Fang, Weiwei
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [40] Multi-Task Decomposition Architecture based Deep Reinforcement Learning for Obstacle Avoidance
    Zhang, Wengang
    He, Cong
    Wang, Teng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2735 - 2740