Fractional evaluation of Kaup-Kupershmidt equation with the exponential-decay kernel

被引:5
|
作者
Al-Sawalha, M. Mossa [1 ]
Shah, Rasool [2 ]
Nonlaopon, Kamsing [3 ]
Khan, Imran [4 ]
Ababneh, Osama Y. [5 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Abdul Wali Khan Univ, Dept Math, Mardan 23200, Pakistan
[3] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[4] Bacha Khan Univ Charsadda, Dept Math & Stat, Peshawar, Pakistan
[5] Zarqa Univ, Fac Sci, Dept Math, Zarqa 13110, Jordan
来源
AIMS MATHEMATICS | 2022年 / 8卷 / 02期
关键词
Kaup-Kupershmidt equation; Yang transform; new iterative transform method; Caputo-Fabrizio operator; DIFFERENTIAL-EQUATIONS; MODEL; STRATEGY;
D O I
10.3934/math.2023186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the semi-analytical solution of Kaup-Kupershmidt equations with the help of a modified method known as the new iteration transformation technique. This method combines the Yang transform and the new iteration technique. The nonlinear terms can be calculated straightforwardly by a new iteration method. The numerical simulation results have been presented to demonstrate the reliability and validity of the proposed approach. The result confirms that the suggested technique is the best tool for dealing with any nonlinear problems arising in technology and science. In addition, in terms of figures for varying fractional order, the physical behavior of new iteration transformation technique solutions has been shown and the numerical simulation is also exhibited. The solutions of the new iteration transformation technique reveal that the projected technique is reliable, competitive and powerful for studying complex nonlinear fractional type models.
引用
收藏
页码:3730 / 3746
页数:17
相关论文
共 50 条
  • [21] A Comparative Analysis of Fractional-Order Kaup-Kupershmidt Equation within Different Operators
    Shah, Nehad Ali
    Hamed, Yasser S.
    Abualnaja, Khadijah M.
    Chung, Jae-Dong
    Shah, Rasool
    Khan, Adnan
    SYMMETRY-BASEL, 2022, 14 (05):
  • [22] Darboux transformation and explicit solutions for the Kaup-Kupershmidt equation
    Liu, Tongshuai
    Xia, Tiecheng
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [23] Local Solvability of Cauchy Problem for Kaup-Kupershmidt Equation
    Xiang Qing ZHAO Shen Ming GU School of MathematicsPhysics and Information ScienceZhejiang Ocean UniversityZhejiang PRChina
    数学研究与评论, 2010, 30 (03) : 543 - 551
  • [24] A nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation
    Musette, M
    Verhoeven, C
    PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 182 - 188
  • [25] ILL-POSEDNESS OF MODIFIED KAWAHARA EQUATION AND KAUP-KUPERSHMIDT EQUATION
    闫威
    李用声
    ActaMathematicaScientia, 2012, 32 (02) : 710 - 716
  • [26] ILL-POSEDNESS OF MODIFIED KAWAHARA EQUATION AND KAUP-KUPERSHMIDT EQUATION
    Yan Wei
    Li Yongsheng
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 710 - 716
  • [27] Explicit solutions to the Kaup-Kupershmidt equation via nonlocal symmetries
    Reyes, Enrique G.
    Sanchez, Guillermo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2749 - 2763
  • [28] Soliton solutions for the fifth-order Kaup-Kupershmidt equation
    Wang, Pan
    Xiao, Shu-Hong
    PHYSICA SCRIPTA, 2018, 93 (10)
  • [29] Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation
    Musette, M
    Verhoeven, C
    PHYSICA D, 2000, 144 (1-2): : 211 - 220
  • [30] Rational solutions of the (2+1)-dimensional Kaup-Kupershmidt equation
    Chen, Junchao
    Hu, Xueli
    Zhu, Shundong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 150 - 157