A Testing Procedure for Constant Parameters in Stochastic Volatility Models

被引:0
|
作者
del Hoyo, Juan [1 ]
Llorente, Guillermo [1 ]
Rivero, Carlos [2 ]
机构
[1] Univ Autonoma Madrid, Dept Financiac & Invest Comercial, Madrid 28049, Spain
[2] Univ Complutense Madrid, Dept Econ Financiera & Actuarial Estadist, Madrid 28223, Spain
关键词
Structural change; Sup-Wald test; Monte Carlo simulations; Recursive statistics; Time-varying parameters; MONTE-CARLO METHODS; STRUCTURAL-CHANGE; MOMENTS ESTIMATION; BAYESIAN-ANALYSIS; STOCK-PRICES; RISK PREMIA; JUMP; VARIANCE;
D O I
10.1007/s10614-019-09892-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a two-step method for an omnibus misspecification test for constant parameters in the volatility equation of stochastic volatility models. The proposed test has a well-known null asymptotic distribution free of nuisance parameters. It is easy to implement and has low computational cost. Monte Carlo simulations support the relevance of the proposed method, evaluate the performance of the procedure, and highlight its small computational load. An empirical application shows the relevance of the procedure.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条
  • [31] Applications of Stochastic Volatility Models
    Kuchynka, Alexandr
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2008, 2008, : 309 - 315
  • [32] The memory of stochastic volatility models
    Robinson, PM
    JOURNAL OF ECONOMETRICS, 2001, 101 (02) : 195 - 218
  • [33] Stochastic volatility duration models
    Ghysels, E
    Gouriéroux, C
    Jasiak, J
    JOURNAL OF ECONOMETRICS, 2004, 119 (02) : 413 - 433
  • [34] Implied Stochastic Volatility Models
    Ait-Sahalia, Yacine
    Li, Chenxu
    Li, Chen Xu
    REVIEW OF FINANCIAL STUDIES, 2021, 34 (01): : 394 - 450
  • [35] MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS
    Corlay, Sylvain
    Lebovits, Joachim
    Vehel, Jacques Levy
    MATHEMATICAL FINANCE, 2014, 24 (02) : 364 - 402
  • [36] Complications with stochastic volatility models
    Sin, CA
    ADVANCES IN APPLIED PROBABILITY, 1998, 30 (01) : 256 - 268
  • [37] Gamma stochastic volatility models
    Abraham, B
    Balakrishna, N
    Sivakumar, R
    JOURNAL OF FORECASTING, 2006, 25 (03) : 153 - 171
  • [38] INFLUENCE IN STOCHASTIC VOLATILITY MODELS
    Motta, Anderson C. O.
    Hotta, Luiz K.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2012, 27 (01) : 27 - 45
  • [39] Stochastic volatility and DSGE models
    Andreasen, Martin M.
    ECONOMICS LETTERS, 2010, 108 (01) : 7 - 9
  • [40] Complete models with stochastic volatility
    Hobson, DG
    Rogers, LCG
    MATHEMATICAL FINANCE, 1998, 8 (01) : 27 - 48