Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries

被引:35
|
作者
Bi, Haijun [1 ]
Zhu, Huabing [1 ]
Zu, Lei [1 ]
Gao, Yong [1 ]
Gao, Song [1 ]
Bai, Yuxuan [1 ]
机构
[1] Hefei Univ Technol, Sch Mech Engn, 193 Tunxi Rd, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium iron phosphate battery; recovery technology; discharge and disassembly; low-temperature heat treatment; sample screening analysis; corona electrostatic separation; ION BATTERY; VALUABLE METALS; SEPARATION; COBALT; GRAPHITE; RESOURCES; CARBONATE; NICKEL; LICOO2;
D O I
10.1177/0734242X20931933
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The consumption of lithium iron phosphate (LFP)-type lithium-ion batteries (LIBs) is rising sharply with the increasing use of electric vehicles (EVs) worldwide. Hence, a large number of retired LFP batteries from EVs are generated annually. A recovery technology for spent LFP batteries is urgently required. Compared with pyrometallurgical, hydrometallurgical and biometallurgical recycling technologies, physical separating technology has not yet formed a systematic theory and efficient sorting technology. Strengthening the research and development of physical separating technology is an important issue for the efficient use of retired LFP batteries. In this study, spent LFP batteries were discharged in 5 wt% sodium chloride solution for approximately three hours. A specially designed machine was developed to dismantle spent LFP batteries. Extending heat treatment time exerted minimal effect on quality loss. Within the temperature range of 240 degrees C-300 degrees C, temperature change during heat treatment slightly affected mass loss. The change in heat treatment temperature also had negligible effect on the shedding quality of LFP materials. The cathode material and the aluminium foil current collector accounted for a certain proportion in a sieve with a particle size of -1.25 + 0.40 mm. Corona electrostatic separation was performed to separate the metallic particles (with a size range of -1.5 + 0.2 mm) from the nonmetallic particles of crushed spent LFP batteries. No additional reagent was used in the process, and no toxic gases, hazardous solid waste or wastewater were produced. This study provides a complete material recovery process for spent LFP batteries.
引用
收藏
页码:911 / 920
页数:10
相关论文
共 50 条
  • [21] A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries
    Gong, Rui
    Li, Chenchen
    Meng, Qi
    Dong, Peng
    Zhang, Yingjie
    Zhang, Bao
    Yan, Jin
    Li, Yong
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 319
  • [22] Lithium iron phosphate spheres as cathode materials for high power lithium ion batteries
    Vu, Anh
    Stein, Andreas
    JOURNAL OF POWER SOURCES, 2014, 245 : 48 - 58
  • [23] Research progress on the direct regeneration technology for cathode materials from spent lithium-ion batteries
    Li, Hongyan
    Xie, Shuhan
    Zhang, Yanru
    Wang, Yongjing
    Wang, Yonghao
    Lyu, Yuancai
    Lin, Chunxiang
    Li, Xiaojuan
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2024, 43 (09): : 5207 - 5216
  • [24] Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery
    Song, Shao-Le
    Liu, Run-Qing
    Sun, Miao-Miao
    Zhen, Ai-Gang
    Kong, Fan-Zhen
    Yang, Yue
    RARE METALS, 2024, 43 (03) : 1275 - 1287
  • [25] Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery
    Shao-Le Song
    Run-Qing Liu
    Miao-Miao Sun
    Ai-Gang Zhen
    Fan-Zhen Kong
    Yue Yang
    Rare Metals, 2024, 43 : 1275 - 1287
  • [26] Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery
    Shao-Le Song
    Run-Qing Liu
    Miao-Miao Sun
    Ai-Gang Zhen
    Fan-Zhen Kong
    Yue Yang
    Rare Metals, 2024, 43 (03) : 1275 - 1287
  • [27] A review on the recycling of spent lithium iron phosphate batteries
    Zhao, Tianyu
    Li, Weilun
    Traversy, Michael
    Choi, Yeonuk
    Ghahreman, Ahmad
    Zhao, Zhongwei
    Zhang, Chao
    Zhao, Weiduo
    Song, Yunfeng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 351
  • [28] Treatment of spent lithium iron phosphate (LFP) batteries
    Naseri, Tannaz
    Mousavi, Seyyed Mohammad
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2024, 47
  • [29] Cathode Materials Based on Lithium Iron Phosphate/PEDOT Composites for Lithium-Ion Batteries
    Ozerova, V. V.
    Stenina, I. A.
    Kuz'mina, A. A.
    Kulova, T. L.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2020, 56 (06) : 648 - 656
  • [30] Cathode Materials Based on Lithium Iron Phosphate/PEDOT Composites for Lithium-Ion Batteries
    V. V. Ozerova
    I. A. Stenina
    A. A. Kuz’mina
    T. L. Kulova
    A. B. Yaroslavtsev
    Inorganic Materials, 2020, 56 : 648 - 656