On curves on K3 surfaces, II

被引:0
|
作者
Martens, Gerriet [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Clifford index; K3; surfaces;
D O I
10.1007/s00013-017-1094-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Clifford index c of a smooth irreducible curve X in the linear series |2H| on a special K3 surface S of degree 2n in , with hyperplane section H, and we look for the complete and base point free linear series of S whose restrictions to X compute c. In a more general context, we discuss the features of such series, for an assigned curve on a K3 surface; this discussion is of some independent interest.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 50 条
  • [11] On curves on K3 surfaces: III
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2020, 115 (04) : 401 - 412
  • [12] The number of rational curves on K3 surfaces
    Wu, Baosen
    ASIAN JOURNAL OF MATHEMATICS, 2007, 11 (04) : 635 - 650
  • [13] CONSTRUCTING RATIONAL CURVES ON K3 SURFACES
    Bogomolov, Fedor
    Hassett, Brendan
    Tschinkel, Yuri
    DUKE MATHEMATICAL JOURNAL, 2011, 157 (03) : 535 - 550
  • [14] Rational curves on elliptic K3 surfaces
    Tayou, Salim
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (04) : 1237 - 1247
  • [15] Nodal elliptic curves on K3 surfaces
    Chen, Nathan
    Greer, Francois
    Yang, Ruijie
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 2349 - 2370
  • [16] Orbits of curves on certain K3 surfaces
    Baragar, A
    COMPOSITIO MATHEMATICA, 2003, 137 (02) : 115 - 134
  • [17] 24 rational curves on K3 surfaces
    Rams, Slawomir
    Schuett, Matthias
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (06)
  • [18] The moduli of singular curves on K3 surfaces
    Kemeny, Michael
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (05): : 882 - 920
  • [19] Nodal elliptic curves on K3 surfaces
    Nathan Chen
    François Greer
    Ruijie Yang
    Mathematische Annalen, 2023, 386 : 2349 - 2370
  • [20] Rational Curves on Mg and K3 Surfaces
    Benzo, Luca
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (15) : 4179 - 4214