Option valuation by using discrete singular convolution

被引:9
|
作者
Zhao, S [1 ]
Wei, GW
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
关键词
option pricing; discrete singular convolution; adaptive mesh; American option valuation; optimal exercise boundary;
D O I
10.1016/j.amc.2004.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper explores the utility of a discrete singular convolution (DSC) algorithm for solving the Black-Scholes equation. Both European and American style options, which include all nontrivial plain option pricing problem,,;, are considered to test the accuracy and to examine the efficiency of the present algorithm. Adaptive meshes are constructed to enhance the performance of the DSC algorithm. All the present results are validated either by the analytical Solution or by the standard binomial tree method. Extensive comparisons are carried out with two standard finite difference schemes and two binomial models of high speed convergence. Numerical experiments reveal that the present approach is accurate, efficient and reliable for financial derivative valuations. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:383 / 418
页数:36
相关论文
共 50 条
  • [21] Free vibration analyses of Timoshenko beams with free edges by using the discrete singular convolution
    Xu, Suming
    Wang, Xinwei
    ADVANCES IN ENGINEERING SOFTWARE, 2011, 42 (10) : 797 - 806
  • [22] Singular loci of algebras over ramified discrete valuation rings
    Nawaj, K. C.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (12) : 3883 - 3894
  • [23] Discrete singular convolution for the solution of the Fokker-Planck equation
    Wei, GW
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (18): : 8930 - 8942
  • [24] Discrete singular convolution for the prediction of high frequency vibration of plates
    Zhao, YB
    Wei, GW
    Xiang, Y
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (01) : 65 - 88
  • [25] Novel Symplectic Discrete Singular Convolution Method for Hamiltonian PDEs
    Cai, Wenjun
    Zhang, Huai
    Wang, Yushun
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (05) : 1375 - 1396
  • [26] DISCRETE SINGULAR CONVOLUTION FOR FREE VIBRATION ANALYSIS ANNULAR MEMBRANES
    Civalek, Oemer
    Guerses, Murat
    MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2009, 14 (02): : 131 - 138
  • [27] Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation
    Civalek, Oemer
    Emsen, Engin
    STEEL AND COMPOSITE STRUCTURES, 2009, 9 (01): : 59 - 75
  • [28] Periodic Steady-State Analysis of Relaxation Oscillators Using Discrete Singular Convolution Method
    Moskovko, Artem
    Vityaz, Oleg
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2017, : 506 - 510
  • [29] Land valuation using a real option approach
    Moreno, Manuel
    Navas, Javier F.
    Todeschini, Federico
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2009, 103 (02) : 405 - 420
  • [30] Discrete singular convolution mapping methods for solving singular boundary value and boundary layer problems
    Pindza, Edson
    Mare, Eben
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (03):