Investigation of a Solid-State Tuning Behavior in Lithium Niobate

被引:0
|
作者
Branch, Darren W. [1 ]
Nordquist, Christopher D. [2 ]
Eichenfield, Matthew [3 ]
Douglas, James K. [3 ]
Siddiqui, Aleem [3 ]
Friedmann, Thomas A. [4 ]
机构
[1] Sandia Natl Labs, Nano & Microsensors Dept, POB 5800, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Optoelect Dept 3 5, POB 5800, Albuquerque, NM 87185 USA
[3] Sandia Natl Labs, MEMS Technol Dept, POB 5800, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, MESAFab Operat Dept, POB 5800, Albuquerque, NM 87185 USA
来源
2018 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP) | 2018年
关键词
Tunable filters; piezoelectric transducers; lithium niobate;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electric field-based frequency tuning of acoustic resonators at the material level provides an enabling technology for building complex tunable filters. Tunable acoustic resonators were fabricated in thin plates (h/lambda similar to 0.05) of X-cut lithium niobate (90 degrees, 90 degrees,psi = 170 degrees). Lithium niobate is known for its large electromechanical coupling (SH: K-2 = 40%) and thus applicability for low-insertion loss and wideband filter applications. We demonstrate the effect of a DC bias to shift the resonant frequency by similar to 0.4% by directly tuning the resonator material. The mechanism is based on the nonlinearities that exist in the piezoelectric properties of lithium niobate. Devices centered at 332 MHz achieved frequency tuning of 12 kHz/V through application of a DC bias.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Solid-state electrolytes for solid-state lithium-sulfur batteries:Comparisons, advances and prospects
    Xin Liang
    Lulu Wang
    Xiaolong Wu
    Xuyong Feng
    Qiujie Wu
    Yi Sun
    Hongfa Xiang
    Jiazhao Wang
    Journal of Energy Chemistry , 2022, (10) : 370 - 386
  • [32] The Influence of Oil Density and Viscosity on the behavior of a Lithium Niobate Tuning Fork Cantilever
    Toda, Minoru
    Thompson, Mitchell
    Sirven, Antoine
    Nordin, Christophe
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012,
  • [33] Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects
    Liang, Xin
    Wang, Lulu
    Wu, Xiaolong
    Feng, Xuyong
    Wu, Qiujie
    Sun, Yi
    Xiang, Hongfa
    Wang, Jiazhao
    JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 370 - 386
  • [34] Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook
    Wang, Senhao
    La Monaca, Andrea
    Demopoulos, George P.
    ENERGY ADVANCES, 2025, 4 (01):
  • [35] Progress and prospective of solid-state lithium batteries
    Takada, Kazunori
    ACTA MATERIALIA, 2013, 61 (03) : 759 - 770
  • [36] Integrated Solid-State Film Lithium Battery
    Goncalves, L. M.
    Ribeiro, J. F.
    Silva, M. F.
    Silva, M. M.
    Correia, J. H.
    EUROSENSORS XXIV CONFERENCE, 2010, 5 : 778 - 781
  • [37] SUBSTITUTED POLYPYRROLES IN SOLID-STATE LITHIUM CELLS
    MINETT, MG
    OWEN, JR
    SYNTHETIC METALS, 1989, 28 (1-2) : C211 - C216
  • [38] Interfacial Nanoarchitectonics for Solid-State Lithium Batteries
    Takada, Kazunori
    LANGMUIR, 2013, 29 (24) : 7538 - 7541
  • [39] Solid-state lithium battery with graphite anode
    Takada, K
    Inada, T
    Kajiyama, A
    Sasaki, H
    Kondo, S
    Watanabe, M
    Murayama, M
    Kanno, R
    SOLID STATE IONICS, 2003, 158 (3-4) : 269 - 274
  • [40] Solid-state lithium batteries: Safety and prospects
    Guo, Yong
    Wu, Shichao
    He, Yan-Bing
    Kang, Feiyu
    Chen, Liquan
    Li, Hong
    Yang, Quan-Hong
    ESCIENCE, 2022, 2 (02): : 138 - 163