Efficient Quantum Dot-Quantum Dot and Quantum Dot-Dye Energy Transfer in Biotemplated Assemblies

被引:29
|
作者
Achermann, Marc [1 ]
Jeong, Sohee [1 ]
Balet, Laurent [1 ]
Montano, Gabriel A. [1 ]
Hollingsworth, Jennifer A. [1 ]
机构
[1] Los Alamos Natl Lab, Div Chem, C PCS, Los Alamos, NM 87545 USA
关键词
nanocrystal quantum dots; Forster resonance energy transfer; microtubule; biotemplated assembly; MOTOR PROTEINS; DNA; NANOPARTICLES; NANOCRYSTALS; TEMPLATES; TRANSPORT; DONORS; ARRAYS;
D O I
10.1021/nn102365v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CdSe semiconductor nonocrystal quantum dots are assembled into nanowire-like arrays employing microtubule fibers is nanoscale molecular "scaffolds" Spectrally and time-resolved energy-transfer analysis is used to assess the assembly of the nanoparticles into the hybrid, Inorganic biomolecular structure. Specifically, we demonstrate that a comprehensive study of energy transfer between quantum dot pairs on the biotemplate and alternatively, between quantum dots and molecular dyes embedded In the microtubule scaffold comprises a powerful spectroscopic tool for evaluating the assembly,process, In addition to revealing the extent to which assembly has occurred, the approach allows determination of particle-to-particle (and particle-to-dye) distances within the biomediated array Significantly the characterization is realized in situ, without need for further sample workup or risk of disturbing the solution phase constructs. Furthermore, we find that the assemblies prepared in-this way exhibit efficient quantum dot quantum dot and quantum dot dye energy transfer that affords faster energy-transfer rates compared to densely packed quantum dot arrays on planar, substrates and to small-molecule-mediated quantum dot dye couples, respectively.
引用
收藏
页码:1761 / 1768
页数:8
相关论文
共 50 条
  • [11] Quantum dot dot dot
    Nature Nanotechnology, 2023, 18 : 1375 - 1375
  • [12] Energy Transfer in Quantum Dot Solids
    Kholmicheva, Natalia
    Moroz, Pavel
    Eckard, Holly
    Jensen, Gregory
    Zamkov, Mikhail
    ACS ENERGY LETTERS, 2017, 2 (01): : 154 - 160
  • [13] Quantum dot dot dot
    不详
    NATURE NANOTECHNOLOGY, 2023, 18 (12) : 1375 - 1375
  • [14] Evidence of homo-FRET in quantum dot-dye heterostructured assembly
    Saha, Samyabrata
    Majhi, Debashis
    Bhattacharyya, Kalishankar
    Preeyanka, Naupada
    Datta, Ayan
    Sarkar, Moloy
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (14) : 9523 - 9535
  • [15] Multiparameter fluorescence Spectroscopy of single quantum dot-dye FRET hybrids
    Xu, C. Shan
    Kirn, Hahkjoon
    Yang, Haw
    Hayden, Carl C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (36) : 11008 - +
  • [16] Multiparameter fluorescence spectroscopy of single quantum dot-dye FRET hybrids
    Xu, C. Shan
    Kim, Hahkjoon
    Yang, Haw
    Hayden, Carl C.
    Journal of the American Chemical Society, 2007, 129 (36): : 11008 - 11009
  • [17] Investigation of potential profile effects in quantum dot and onion-like quantum dot-quantum well on optical properties
    Elyasi, P.
    SalmanOgli, A.
    OPTICS COMMUNICATIONS, 2014, 318 : 26 - 30
  • [18] Quantum dot and quantum dot-dye co-sensitized solar cells containing organic thiolate-disulfide redox electrolyte
    Meng, Ke
    Surolia, Praveen K.
    Byrne, Owen
    Thampi, K. Ravindranathan
    JOURNAL OF POWER SOURCES, 2015, 275 : 681 - 687
  • [19] Chirality Control of Electron Transfer in Quantum Dot Assemblies
    Bloom, Brian P.
    Graff, Brittney M.
    Ghosh, Supriya
    Beratan, David N.
    Waldeck, David H.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (26) : 9038 - 9043
  • [20] SPIN CORRELATION IN A DOUBLE QUANTUM DOT-QUANTUM WIRE COUPLED SYSTEM
    Sasaki, S.
    Kang, S.
    Miyashita, S.
    Maruyama, T.
    Tamura, H.
    Akazaki, T.
    Hirayama, Y.
    Takayanagi, H.
    CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPRINTRONICS, 2008, : 245 - +