Decompositions into Subgraphs of Small Diameter

被引:2
|
作者
Fox, Jacob [1 ]
Sudakov, Benny [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2010年 / 19卷 / 5-6期
基金
美国国家科学基金会;
关键词
GRAPHS;
D O I
10.1017/S0963548310000040
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate decompositions of a graph into a small number of low-diameter subgraphs. Let P(n,epsilon,d) be the smallest k such that every graph G =(V, E) on n vertices has an edge partition E=E(0)boolean OR E(1)boolean OR...boolean OR E(k) such that vertical bar E(0)vertical bar <= epsilon n(2), and for all 1 <= i <= k the diameter of the subgraph spanned by E(i) is at most d. Using Szemeredi's regularity lemma, Polcyn and Rucinski showed that P(n,epsilon,4) is bounded above by a constant depending only on epsilon. This shows that every dense graph can be partitioned into a small number of 'small worlds' provided that a few edges can be ignored. Improving on their result, we determine P(n,epsilon,d) within an absolute constant factor, showing that P(n,epsilon,2) = Theta(n) is unbounded for epsilon < 1/4, P(n,epsilon,3) = Theta(1/epsilon(2)) for epsilon > n(-1/2) and P(n,epsilon,4) = Theta(1/epsilon) for epsilon > n(-1). We also prove that if G has large minimum degree, all the edges of G can be covered by a small number of low-diameter subgraphs. Finally, we extend some of these results to hypergraphs, improving earlier work of Polcyn, Rodl, Rucinski and Szemeredi.
引用
收藏
页码:753 / 774
页数:22
相关论文
共 50 条
  • [21] Rainbow subgraphs in Hamiltonian cycle decompositions of complete graphs
    Liu, Yuchen
    Chen, Yaojun
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [22] Decompositions of graphs of nonnegative characteristic with some forbidden subgraphs
    Tian, Fangyu
    Niu, Lin
    Li, Xiangwen
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 456
  • [23] LOW DIAMETER GRAPH DECOMPOSITIONS
    LINIAL, N
    SAKS, M
    COMBINATORICA, 1993, 13 (04) : 441 - 454
  • [24] Decompositions of complete graphs into bipartite 2-regular subgraphs
    Bryant, Darryn
    Burgess, Andrea
    Danziger, Peter
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [25] Approximating Maximum Diameter-Bounded Subgraphs
    Asahiro, Yuichi
    Miyano, Eiji
    Samizo, Kazuaki
    LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 615 - +
  • [26] RECOGNIZING SMALL SUBGRAPHS
    SUNDARAM, G
    SKIENA, SS
    NETWORKS, 1995, 25 (04) : 183 - 191
  • [27] Covering small subgraphs of (hyper)tournaments with spanning acyclic subgraphs
    Yuster, Raphael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 15
  • [28] ON THE ISOSPECTRAL SUBGRAPHS OF BIREGULAR GEODESIC GRAPHS OF DIAMETER 2
    Gavrilyuk, A. L.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2007, 13 (04): : 49 - 60
  • [29] Induced subgraphs and tree decompositions V. one neighbor in a hole
    Abrishami, Tara
    Alecu, Bogdan
    Chudnovsky, Maria
    Hajebi, Sepehr
    Spirkl, Sophie
    Vuskovic, Kristina
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 542 - 561
  • [30] MAXIMIZING LINE SUBGRAPHS OF DIAMETER AT MOST t\ast
    Cambie, Stijn
    van Batenburgddagger, Wouter Cames
    de Verclos, Remi de Joannis
    Kang, Ross J.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (02) : 939 - 950