Dynamical scaling and generalized Omori law

被引:31
|
作者
Lippiello, E. [1 ]
Bottiglieri, M.
Godano, C.
De Arcangelis, L.
机构
[1] Univ Naples 2, Consorzio Nazl Inter Univ Sci Fis Materia, Dept Informat Engn, Naples, Italy
[2] Univ Naples 2, Consorzio Nazl Univ Sci Fis Materia, Dept Environm Sci, Naples, Italy
关键词
D O I
10.1029/2007GL030963
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The power law decay of the aftershocks rate is observed only after a characteristic time scale c. The dependence of c on the mainshock magnitude MM and on the lower cut-off magnitude M-I is well established. By considering ten sequences recorded in the California Catalog we show that the aftershock number distribution becomes independent of both M-M and M-I if time is rescaled by an appropriate time scale fixed by the difference M-M - M-I. This result is interpreted within a more general dynamical scaling hypothesis recently formulated, relating time differences to magnitude differences. The above hypothesis gives predictions in good agreement with the recent findings by Peng et al. ( 2007). Citation: Lippiello, E., M. Bottiglieri, C. Godano, and L. de Arcangelis ( 2007), Dynamical scaling and generalized Omori law.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Omori law for foreshocks and aftershocks in a realistic earthquake model
    Braun, O. M.
    Pyrard, M.
    EPL, 2019, 126 (04)
  • [32] Omori law for sliding of blocks on inclined rough surfaces
    Parteli, EJR
    Gomes, MAF
    Montarroyos, E
    Brito, VP
    PHYSICA A, 2001, 292 (1-4): : 536 - 544
  • [33] New Empirical Tests of the Multifractal Omori Law for Taiwan
    Tsai, Ching-Yi
    Ouillon, Guy
    Sornette, Didier
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2012, 102 (05) : 2128 - 2138
  • [34] DYNAMICS OF CRITICAL FLUCTUATIONS .3. A STUDY OF DYNAMICAL SCALING LAW
    KAWASAKI, K
    PROGRESS OF THEORETICAL PHYSICS, 1968, 40 (04): : 706 - &
  • [35] The black hole dynamical horizon and generalized second law of thermodynamics
    He, Song
    Zhang, Hongbao
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):
  • [36] Verification of the Generalized Scaling Law for Flat Layered Sand Deposit
    Tobita, T.
    Escoffier, S.
    Chazelas, J. L.
    Iai, S.
    GEOTECHNICAL ENGINEERING, 2014, 45 (03): : 32 - 39
  • [37] Strain rate and temperature dependence of Omori law scaling constants of AE data: Implications for earthquake foreshock-aftershock sequences
    Ojala, IO
    Main, IG
    Ngwenya, BT
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (24) : 1 - 5
  • [38] Comment on "Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models"
    Marsan, D
    Bean, CJ
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [39] Financial crisis, Omori's law, and negative entropy flow
    Gao, Jianbo
    Hu, Jing
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2014, 33 : 79 - 86
  • [40] A generalized Omori-Yau maximum principle in Finsler geometry
    Yin, Song-Ting
    He, Qun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 227 - 247