IMPROVED JENSEN-TYPE INEQUALITIES VIA LINEAR INTERPOLATION AND APPLICATIONS

被引:20
|
作者
Choi, Daeshik [1 ]
Krnic, Mario [2 ]
Pecaric, Josip [3 ]
机构
[1] Southern Illinois Univ, Dept Math & Stat, Box 1653, Edwardsville, IL 62026 USA
[2] Univ Zagreb, Fac Elect Engn & Comp, Unska 3, Zagreb 10000, Croatia
[3] Univ Zagreb, Fac Text Technol, Prilaz Baruna Filipovica 28a, Zagreb 10000, Croatia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2017年 / 11卷 / 02期
关键词
Convex function; Jensen inequality; Young inequality; Kantorovich constant; Specht ratio; arithmetic mean; geometric mean; Heinz mean; OPERATOR INEQUALITIES; HEINZ INEQUALITIES; IMPROVED YOUNG;
D O I
10.7153/jmi-11-27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a general method for improving Jensen-type inequalities for convex and, even more generally, for piecewise convex functions. Our main result relies on the linear interpolation of a convex function. As a consequence, we obtain improvements of some recently established Young-type inequalities. Finally, our method is also applied to matrix case. In such a way we obtain improvements of some important matrix inequalities known from the literature.
引用
收藏
页码:301 / 322
页数:22
相关论文
共 50 条
  • [21] More accurate Jensen-type inequalities for signed measures characterized via Green function and applications
    Krnic, Mario
    Pecaric, Josip
    Rodic, Mirna
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (06) : 1482 - 1496
  • [22] ON JENSEN-TYPE INEQUALITIES FOR HARMONIC CONVEX FUNCTIONS
    Bosch, Paul
    Rodriguez-Garcia, Jose M.
    Sigarreta, Jose M.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (04): : 1399 - 1413
  • [23] Reverses of the Jensen-Type Inequalities for Signed Measures
    Jaksic, Rozarija
    Pecaric, Josip
    Lipanovic, Mirna Rodic
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [24] JENSEN-TYPE INEQUALITIES FOR A CLASS OF CONVEX FUNCTIONS
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi Alao
    Omotoyinbo, Opeyemi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (03): : 655 - 666
  • [25] JENSEN-TYPE INEQUALITIES FOR LOG-CONVEX FUNCTIONS
    Khodabakhshian, H.
    Goudarzi, N.
    Safshekan, R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (02): : 113 - 123
  • [26] Jensen-type inequalities for m-convex functions
    Bosch, Paul
    Quintana, Yamilet
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    OPEN MATHEMATICS, 2022, 20 (01): : 946 - 958
  • [27] n-EXPONENTIAL CONVEXITY FOR JENSEN-TYPE INEQUALITIES
    Khan, Asif R.
    Pecaric, Josip
    Lipanovic, Mirna Rodic
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 313 - 335
  • [28] IMPROVED JENSEN-DRAGOMIR TYPE INEQUALITIES AND APPLICATIONS
    The, Pham Thanh
    Van, Doan Thi Thuy
    Huy, Duong Quoc
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (03): : 1053 - 1066
  • [29] SHARP MEAN-VARIANCE BOUNDS FOR JENSEN-TYPE INEQUALITIES
    PITTENGER, AO
    STATISTICS & PROBABILITY LETTERS, 1990, 10 (02) : 91 - 94
  • [30] DIRECT AND CONVERSE RESULTS FOR GENERALIZED MULTIVARIATE JENSEN-TYPE INEQUALITIES
    Guessab, Allal
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (04) : 777 - 797