Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

被引:4
|
作者
Jin, Bin Bin [1 ,2 ,3 ]
Wang, Ye Feng [4 ]
Wei, Dong [1 ,2 ]
Cui, Bin [5 ]
Chen, Yu [1 ,2 ]
Zeng, Jing Hui [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Key Lab Macromol Sci Shaanxi Prov, Xian 710062, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Xian 710062, Peoples R China
[3] Shaanxi Inst Technol, Inst Ind Chem, Dept Chem Engn, Xian 710300, Peoples R China
[4] Shaanxi Normal Univ, Sch Chem & Chem Engn, Xian 710062, Peoples R China
[5] Northwestern Univ, Sch Chem & Mat Sci, Xian 710620, Peoples R China
关键词
DOPED TIO2; ELECTRON-MOBILITY; ZNO NANOCRYSTALS; NANOWIRE ARRAYS; ENERGY-TRANSFER; MN; PHOTOANODE; GROWTH; MG; LUMINESCENCE;
D O I
10.1063/1.4953107
中图分类号
O59 [应用物理学];
学科分类号
摘要
A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn2+ is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the "loss-in-potential," inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Stability of quantum dot-sensitized solar cells: A review and prospects
    Rasal, Akash S.
    Yadav, Sudesh
    Kashale, Anil A.
    Altaee, Ali
    Chang, Jia-Yaw
    NANO ENERGY, 2022, 94
  • [22] Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells
    Huang, Ping
    Xu, Shunjian
    Zhang, Meng
    Zhong, Wei
    Xiao, Zonghu
    Luo, Yongping
    OPTICAL MATERIALS, 2020, 110
  • [23] Has the Sun Set on Quantum Dot-Sensitized Solar Cells?
    Wrenn, Toshia L.
    McBride, James R.
    Smith, Nathanael J.
    Rosenthal, Sandra J.
    NANOMATERIALS AND NANOTECHNOLOGY, 2015, 5 : 1 - 16
  • [24] Improved Performance of Colloidal CdSe Quantum Dot-Sensitized Solar Cells by Hybrid Passivation
    Huang, Jing
    Xu, Bo
    Yuan, Chunze
    Chen, Hong
    Sun, Junliang
    Sun, Licheng
    Agren, Hans
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (21) : 18808 - 18815
  • [25] Improved performance of quantum dot-sensitized solar cells by full-spectrum utilization
    Li, Wenhui
    Yang, Xijia
    Wang, Liying
    Zhang, Xueyu
    Li, Xuesong
    Lue, Wei
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 148
  • [26] Analysis on the photovoltaic property of Si quantum dot-sensitized solar cells
    Hyunwoong Seo
    Daiki Ichida
    Giichiro Uchida
    Kunihiro Kamataki
    Naho Itagaki
    Kazunori Koga
    Masaharu Shiratani
    International Journal of Precision Engineering and Manufacturing, 2014, 15 : 339 - 343
  • [27] Surface treatment properties of CdS quantum dot-sensitized solar cells
    Abdul Razzaq
    Jun Young Lee
    Bhaskar Bhattacharya
    Jung-Ki Park
    Applied Nanoscience, 2014, 4 : 745 - 752
  • [28] A novel method for fabrication of CdS quantum dot-sensitized solar cells
    Zhang, Yu
    Tian, Jianhua
    Jiang, Kejian
    Huang, Jinhua
    Zhang, Lipeng
    Wang, Huijia
    Bao, Bin
    Song, Yanlin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (19) : 14103 - 14109
  • [29] Electrolyte for quantum dot-sensitized solar cells assessed with cyclic voltammetry
    Fumin Ren
    Sujun Li
    Chenglei He
    Science China Materials, 2015, 58 : 490 - 495
  • [30] A novel method for fabrication of CdS quantum dot-sensitized solar cells
    Yu Zhang
    Jianhua Tian
    Kejian Jiang
    Jinhua Huang
    Lipeng Zhang
    Huijia Wang
    Bin Bao
    Yanlin Song
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 14103 - 14109