3D x-ray imaging of continuous objects beyond the depth of focus limit

被引:22
|
作者
Gilles, M. A. [1 ,2 ]
Nashed, Y. S. G. [1 ]
Du, M. [3 ]
Jacobsen, C. [4 ,5 ,6 ]
Wild, S. M. [1 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[4] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[5] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[6] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
来源
OPTICA | 2018年 / 5卷 / 09期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ALTERNATING LINEARIZED MINIMIZATION; COMPUTED-TOMOGRAPHY; PHASE RETRIEVAL; ZONE PLATES; DIFFRACTION; TRANSMISSION; MULTISLICE; MICROSCOPY; RESOLUTION; RECONSTRUCTION;
D O I
10.1364/OPTICA.5.001078
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
X-ray ptychography is becoming the standard method for sub-30 nm imaging of thick extended samples. Available algorithms and computing power have traditionally restricted sample reconstruction to 2D slices. We build on recent progress in optimization algorithms and high-performance computing to solve the ptychographic phase retrieval problem directly in 3D. Our approach addresses samples that do not fit entirely within the depth of focus of the imaging system. Such samples pose additional challenges because of internal diffraction effects within the sample. We demonstrate our approach on a computational sample modeled with 17 million complex variables. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1078 / 1086
页数:9
相关论文
共 50 条
  • [21] Quantitative analysis of 3D coronary modeling in 3D rotational X-ray imaging
    Movassaghi, B
    Rasche, V
    Viergever, MA
    Niessen, W
    2002 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-3, 2003, : 878 - 880
  • [22] 3D Shape Reconstruction of Loop Objects in X-Ray Protein Crystallography
    Strutz, Tilo
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (03) : 797 - 807
  • [23] 3D interventional imaging with 2D x-ray detectors
    Desbat, L
    Champleboux, G
    Fleute, M
    Komarek, P
    Mennessier, C
    Monteil, B
    Rodet, T
    Bessou, P
    Coulomb, M
    Ferretti, G
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 973 - 980
  • [25] 3D x-ray angiography
    Hoffmann, K
    MEDICAL PHYSICS, 2002, 29 (06) : 1278 - 1278
  • [26] Ultrafast X-ray introspective imaging of metallic objects using a Plasma Focus
    Moreno, CH
    Clausse, A
    Martínez, JF
    Llovera, R
    Tartaglione, A
    NUKLEONIKA, 2001, 46 : S33 - S34
  • [27] Alternative in 3D X-ray imaging brings dynamic solutions
    不详
    INSIGHT, 2017, 59 (08) : 406 - 406
  • [28] 3D imaging in material science: Application of X-ray tomography
    Salvo, Luc
    Suery, Michel
    Marmottant, Ariane
    Limodin, Nathalie
    Bernard, Dominique
    COMPTES RENDUS PHYSIQUE, 2010, 11 (9-10) : 641 - 649
  • [29] 3D imaging of sugarcane bagasse using X-ray microtomography
    Isaac, A.
    Sket, F.
    Driemeier, C.
    Rocha, G. J. M.
    INDUSTRIAL CROPS AND PRODUCTS, 2013, 49 : 790 - 793
  • [30] Bayesian inversion method for 3D dental X-ray imaging
    Kolehmainen, V.
    Vanne, A.
    Siltanen, S.
    Järvenpää, S.
    Kaipio, J.P.
    Lassas, M.
    Kalke, M.
    Elektrotechnik und Informationstechnik, 2007, 124 (7-8): : 248 - 253