Unified derivation of phase-field models for alloy solidification from a grand-potential functional

被引:220
|
作者
Plapp, Mathis [1 ]
机构
[1] Ecole Polytech, CNRS, F-91128 Palaiseau, France
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 03期
关键词
DIFFUSE-INTERFACE MODEL; DENDRITIC GROWTH; SIMULATIONS; INSTABILITIES; PATTERNS; FLOWS;
D O I
10.1103/PhysRevE.84.031601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the literature, two quite different phase-field formulations for the problem of alloy solidification can be found. In the first, the material in the diffuse interfaces is assumed to be in an intermediate state between solid and liquid, with a unique local composition. In the second, the interface is seen as a mixture of two phases that each retain their macroscopic properties, and a separate concentration field for each phase is introduced. It is shown here that both types of models can be obtained by the standard variational procedure if a grand-potential functional is used as a starting point instead of a free energy functional. The dynamical variable is then the chemical potential instead of the composition. In this framework, a complete analogy with phase-field models for the solidification of a pure substance can be established. This analogy is then exploited to formulate quantitative phase-field models for alloys with arbitrary phase diagrams. The precision of the method is illustrated by numerical simulations with varying interface thickness.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Comparative study of different anisotropy and potential formulations of phase-field models for dendritic solidification
    Kundin, Julia
    Steinbach, Ingo
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
  • [32] A hyperbolic phase-field model for rapid solidification of a binary alloy
    Wang, Haifeng
    Kuang, Wangwang
    Zhang, Xiao
    Liu, Feng
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (03) : 1277 - 1286
  • [33] Phase-field simulation of binary alloy during directional solidification
    Wang Zhiping
    Xiao Rongzhen
    Zhu Changsheng
    Xu Jianlin
    Wang Yanlu
    RARE METAL MATERIALS AND ENGINEERING, 2006, 35 : 369 - 373
  • [34] A hyperbolic phase-field model for rapid solidification of a binary alloy
    Haifeng Wang
    Wangwang Kuang
    Xiao Zhang
    Feng Liu
    Journal of Materials Science, 2015, 50 : 1277 - 1286
  • [35] Phase-Field Modeling of Binary Eutectic Alloy Solidification with Convection
    Meyer, Stefan
    Otic, Ivan
    Cheng, Xu
    NUCLEAR SCIENCE AND ENGINEERING, 2016, 184 (03) : 377 - 387
  • [36] Phase-field model for the isothermal solidification process of a binary alloy
    Kessler, Daniel
    Krüger, Olivier
    Rappaz, Jacques
    Scheid, Jean-François
    Computer Assisted Mechanics and Engineering Sciences, 2000, 7 (03): : 279 - 288
  • [37] Towards a Physically Consistent Phase-Field Model for Alloy Solidification
    Bollada, Peter C.
    Jimack, Peter K.
    Mullis, Andrew M.
    METALS, 2022, 12 (02)
  • [38] Phase-field modeling of rapid solidification in small alloy droplets
    Kim, SG
    Kim, WT
    Suzuki, T
    ISIJ INTERNATIONAL, 2003, 43 (11) : 1758 - 1766
  • [39] Comparison of phase-field and cellular automaton models for dendritic solidification in Al-Cu alloy
    Choudhury, Abhik
    Reuther, Klemens
    Wesner, Eugenia
    August, Anastasia
    Nestler, Britta
    Rettenmayr, Markus
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 55 : 263 - 268
  • [40] Grand-potential phase field simulations of droplet growth and sedimentation in a two-phase ternary fluid
    Verdier, Werner
    Cartalade, Alain
    Plapp, Mathis
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2024, 32 (06)