Stability and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks

被引:65
|
作者
Gu, Yajuan [1 ]
Wang, Hu [2 ]
Yu, Yongguang [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Stability; Synchronization; Fractional-order; Time delay; Inertial neural networks; DYNAMICS; SYSTEMS;
D O I
10.1016/j.neucom.2019.03.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stability and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks are investigated in this paper. The model of fractional-order inertial neural network is proposed, which is more general and less conservative than the integer-order inertial neural network. Two lemmas on the composition properties of Riemann-Liouville fractional-order derivative and integral are given. Based on the composition properties of Riemann-Liouville fractional-order derivative, the original inertial system is transferred into conventional system through the proper variable substitution. Serval novel and effective feedback controllers are proposed for different cases of fractional-order time-delayed inertial neural networks, such that synchronization between the salve system and the master system can be achieved. In addition, stability conditions for a class of fractional-order time-delayed inertial neural networks are derived. Furthermore, three numerical examples are provided to show the validity and feasibility of the approaches. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 280
页数:11
相关论文
共 50 条