Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors

被引:184
|
作者
Tian, Di [1 ]
Song, Na [1 ]
Zhong, Mengxiao [1 ]
Lu, Xiaofeng [1 ]
Wang, Ce [1 ]
机构
[1] Jilin Univ, Coll Chem, Alan G MacDiarmid Inst, 2699 Qianjin St, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
electrospun nanofibers; bimetal; metal-organic framework; electrode materials; supercapacitor; METAL-ORGANIC FRAMEWORK; POROUS CARBON NANOFIBERS; BINDER-FREE ELECTRODE; DOPED NI-MOF; ENERGY-STORAGE; OXIDE COMPOSITES; FACILE SYNTHESIS; HYBRID; FABRICATION; ARRAYS;
D O I
10.1021/acsami.9b16420
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The rational design of metal-organic framework (MOF)-based materials with a huge specific surface area, high redox activity, and favorable conductivity is currently a hot subject for their potential usage in supercapacitor electrodes. Herein, novel bimetallic MOFs with a flowerlike nanosheet structure grown on the electrospun nanofibers (PPNF@M-Ni MOF, M = Co, Zn, Cu, Fe) have been prepared by controlling the incorporation of various types of metal ions, which display superior electrochemical performance. For example, PPNF@Co-Ni MOF possesses a large specific capacitance of 1096.2 F g(-1) (specific capacity of 548.1 C g(-1)) at 1 A g(-1) and excellent rate performance. In addition, an asymmetric solid-state device composed of PPNF@Co-Ni MOF (positive materials) and KOH-activated carbon nanofibers embedded with reduced graphene oxide (negative materials) reaches a maximum energy density of 93.6 Wh kg(-1) at the power density of 1600.0 W kg(-1) and long cycling life. This work may greatly advance the research toward the design of supported MOF-based electrode materials for a promising prospect in energy conversion and storage.
引用
收藏
页码:1280 / 1291
页数:12
相关论文
共 50 条
  • [31] Freestanding electrodes with polyaniline/Au derived from electrospun carbon nanofibers for high-performance supercapacitors
    Bu, Yan
    Zou, Yunwei
    Cang, Ruibai
    Zhou, Xuejiao
    Yu, Peng
    Zhang, Mingyi
    CRYSTENGCOMM, 2024, 26 (36) : 4985 - 4994
  • [32] Electrospun porous carbon nanofibers @ SnOx nanocomposites for high-performance supercapacitors: Microstructures and electrochemical properties
    Cao, Meilian
    Wang, Dong
    Lu, Jiqing
    Cheng, Wanli
    Han, Guangping
    Zhou, Jianbo
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 143
  • [33] High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets
    Anuratha, Krishnan Shanmugam
    Su, Ying-Zhou
    Huang, Min-Kung
    Hsieh, Chien-Kuo
    Xiao, Yaoming
    Lin, Jeng-Yu
    Journal of Alloys and Compounds, 2022, 897
  • [34] High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets
    Anuratha, Krishnan Shanmugam
    Su, Ying-Zhou
    Huang, Min-Kung
    Hsieh, Chien-Kuo
    Xiao, Yaoming
    Lin, Jeng-Yu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 897
  • [35] NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors
    Veeramani, Vediyappan
    Madhu, Rajesh
    Chen, Shen-Ming
    Sivakumar, Mani
    Hung, Chin-Te
    Miyamoto, Nobuyoshi
    Liu, Shang-Bin
    ELECTROCHIMICA ACTA, 2017, 247 : 288 - 295
  • [36] Tailoring NiCoAl layered double hydroxide nanosheets for assembly of high-performance asymmetric supercapacitors
    Meng, Zhaohui
    Yan, Wen
    Zou, Mingye
    Miao, Hao
    Ma, Fangxing
    Patil, Aniruddha B.
    Yu, Rui
    Liu, Xiang Yang
    Lin, Naibo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 583 : 722 - 733
  • [37] Co3S4 nanoneedles decorated on NiCo2O4 nanosheets for high-performance asymmetric supercapacitors
    Liu, Yu
    Wen, Shiyang
    Shi, Weidong
    MATERIALS LETTERS, 2018, 214 : 194 - 197
  • [38] Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors
    Jiang, Yuting
    Yan, Jun
    Wu, Xiaoliang
    Shan, Dandan
    Zhou, Qihang
    Jiang, Lili
    Yang, Deren
    Fan, Zhuangjun
    JOURNAL OF POWER SOURCES, 2016, 307 : 190 - 198
  • [39] Cobalt-copper MOF: A high-performance and ecofriendly electrode material for symmetric and asymmetric supercapacitors
    Tamtam, Mohan Rao
    Koutavarapu, Ravindranadh
    Wang, Rui
    Choi, Gyu Sang
    Shim, Jaesool
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 188
  • [40] Construction of selenide nanoparticle-anchored bimetallic MOF derivative NiFeSe@NiFe-MOF for application in high-performance supercapacitors
    Cao, Fuhuai
    Zhang, Xinlong
    Wang, Yaya
    Chen, Moran
    Hu, Xinqi
    Zhou, Mengkun
    Liu, Rongmei
    Fuel, 2025, 383