Valence subband structures and optical properties of strain-compensated quantum wells

被引:5
|
作者
Seko, Y [1 ]
Sakamoto, A [1 ]
机构
[1] Fuji Xerox Co Ltd, Corp Res Ctr, Kanagawa 2430494, Japan
关键词
strain compensation; optical gain; band mixing; transition strength; valence subband; quantum well; AlGaInAs;
D O I
10.1143/JJAP.40.34
中图分类号
O59 [应用物理学];
学科分类号
摘要
The strain compensation effects on the valence subbands and on the optical properties of CaInAs/AlCaInAs quantum well structures are theoretically studied for the first time. In the case of compressive-strained quantum wells, where the top valence subbands are always formed with heavy hole (HH) subbands, the compensatingly tensile-strained barriers shift the first light hole (LH) subbands upward increasing the valence band mixing between them, and significantly reducing the transverse electric (TE) gain. In contrast, in the tensile-strained quantum wells whose top valence subband is formed with LH subband, the compensatingly compressive-strained barriers shift the top LH subband downward and on some occasions the top LH subband is replaced with the first HH one. The increase of the TE gain is relatively small due to the strong valence band mixing. The strain of the barrier layers is found to play an important role in the valence subband structures and optical properties.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [21] Optical properties of strain-compensated InAs/InGaAsN/GaAsN superlattices
    Mamutin, V. V.
    Bondarenko, O. V.
    Vasil'ev, A. P.
    Gladyshev, A. G.
    Egorov, A. Yu.
    Kryzhanovskaya, N. V.
    Mikhrin, V. S.
    Ustinov, V. M.
    TECHNICAL PHYSICS LETTERS, 2007, 33 (05) : 384 - 387
  • [22] Optical properties of strain-compensated InAs/InGaAsN/GaAsN superlattices
    V. V. Mamutin
    O. V. Bondarenko
    A. P. Vasil’ev
    A. G. Gladyshev
    A. Yu. Egorov
    N. V. Kryzhanovskaya
    V. S. Mikhrin
    V. M. Ustinov
    Technical Physics Letters, 2007, 33 : 384 - 387
  • [23] Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structures
    Nuntawong, N.
    Tatebayashi, J.
    Wong, P. S.
    Huffaker, D. L.
    APPLIED PHYSICS LETTERS, 2007, 90 (16)
  • [24] Optical properties of strain-compensated CdSe/ZnSe/(Zn,Mg)Se quantum well microdisks
    Ruth, M.
    Finke, A.
    Schmidt, G.
    Reuter, D.
    Scholz, S.
    Ludwig, A.
    Wieck, A. D.
    Pawlis, A.
    OPTICS EXPRESS, 2015, 23 (22): : 29079 - 29088
  • [25] A novel GaAsN/InGaAs strain-compensated multi-quantum wells solar cell
    Wu, Pei-Hsuan
    Su, Yan-Kuin
    Tzeng, Yen C.
    Hong, Hwen-Fen
    Chu, Kuan-Yu
    Chen, Ying-Ru
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (05) : 549 - 552
  • [26] Growth and characterization of strain-compensated InAsP/GaInP and InGaAs/GaInP multiple quantum wells
    Tu, CW
    Mei, XB
    Yan, CH
    Bi, WG
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 35 (1-3): : 166 - 170
  • [27] Monolithic semiconductor saturable absorber mirror with strain-compensated GaInAs/GaAsP quantum wells
    Xiang, N.
    Liu, H. F.
    Kong, J.
    Tang, D. Y.
    Pessa, M.
    JOURNAL OF CRYSTAL GROWTH, 2007, 301 : 989 - 992
  • [28] Growth of InGaAs/GaAsP Strain-compensated Multiple Quantum Wells via MOCVD Technology
    Wang X.
    Wang H.-Z.
    Zhang B.
    Wang Q.-H.
    Fan J.
    Zou Y.-G.
    Ma X.-H.
    Faguang Xuebao/Chinese Journal of Luminescence, 2021, 42 (04): : 448 - 454
  • [29] MOCVD growth of strain-compensated multi-quantum wells light emitting diode
    Yu, YQ
    Qin, XY
    Huang, BB
    Wei, JY
    Zhou, HL
    Pan, JQ
    Chen, WL
    Qi, Y
    Zhang, XY
    Ren, ZX
    VACUUM, 2003, 69 (04) : 489 - 493
  • [30] Optical gain and spontaneous emission of strain-compensated InGaN-AlGaN quantum wells including carrier screening effect
    Zhao, Hongping
    Arif, Ronald A.
    Ee, Yik Khoon
    Tansu, Nelson
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XVI, 2008, 6889