On a height related to the abc conjecture

被引:0
|
作者
Dubickas, A [1 ]
机构
[1] Vilnius State Univ, Dept Math & Informat, LT-2600 Vilnius, Lithuania
来源
关键词
the Mahler measure; heights of algebraic numbers; abc conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there are only finitely many algebraic numbers whose, certain height is bounded by an absolute constant. This answers in the affirmative a question posed by Browkin who showed that this height is related to the abc conjecture for algebraic numbers. Main tool in the proof is a result of Langevin on equidistribution of arguments of conjugates of an algebraic number having small Mahler measure.
引用
收藏
页码:853 / 857
页数:5
相关论文
共 50 条
  • [41] Dynamical uniform boundedness and the abc-conjecture
    Nicole R. Looper
    Inventiones mathematicae, 2021, 225 : 1 - 44
  • [42] On an arithmetical function associated with the abc-conjecture
    Baker, Alan
    DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 25 - 33
  • [43] On Baker's explicit abc-conjecture
    Chim, Kwok Chi
    Shorey, Tarlok Nath
    Sinha, Sneh Bala
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (3-4): : 435 - 453
  • [44] The effectiveness of Siegel's theorem and the abc conjecture
    Surroca, Andrea
    JOURNAL OF NUMBER THEORY, 2007, 124 (02) : 267 - 290
  • [45] Yang-Mills theory and the ABC conjecture
    He, Yang-Hui
    Hu, Zhi
    Probst, Malte
    Read, James
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2018, 33 (13):
  • [46] Smooth solutions to the abc equation: the xyz Conjecture
    Lagarias, Jeffrey C.
    Soundararajan, Kannan
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 209 - 234
  • [47] Some consequences of the (abc) conjecture in arithmetic and logic
    Langevin, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (03) : 1031 - 1042
  • [48] Dynamical uniform boundedness and the abc-conjecture
    Looper, Nicole R.
    INVENTIONES MATHEMATICAE, 2021, 225 (01) : 1 - 44
  • [49] Vojta's conjecture on blowups of Pn, greatest common divisors, and the abc conjecture
    Yasufuku, Yu
    MONATSHEFTE FUR MATHEMATIK, 2011, 163 (02): : 237 - 247
  • [50] A generalized abc-conjecture over function fields
    Hu, PC
    Yang, CC
    JOURNAL OF NUMBER THEORY, 2002, 94 (02) : 286 - 298