Finite element methods for elliptic optimal control problems with boundary observations

被引:8
|
作者
Yan, Ming [1 ]
Gong, Wei [2 ]
Yan, Ningning [3 ]
机构
[1] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Inst Computat Math, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, NCMIS, LSEC, Acad Math & Syst Sci,Inst Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
A priori error estimates; Boundary observations; Finite elements; Mixed finite elements; Optimal control problemS; DISCRETIZATION; APPROXIMATION;
D O I
10.1016/j.apnum.2014.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper the finite element apprbximations to elliptic optimal control problems with boundary observations. The main feature of this kind of optimal control problems is that the observations or measurements are the outward normal derivatives of the state variable on the boundary, this reduces the regularity of solutions to the optimal control problems. We propose two kinds of finite element methods: the standard FEM and the mixed FEM, to efficiently approximate the underlying optimal control problems. For both cases we derive a priori error estimates for problems posed on polygonal domain. Some numerical experiments are carried out at the end of the paper to support our theoretical findings. (C) 2014 IMACS. Published by Elsevier B.V. All tights reserved.
引用
收藏
页码:190 / 207
页数:18
相关论文
共 50 条
  • [31] An energy space finite element approach for elliptic Dirichlet boundary control problems
    Of, G.
    Phan, T. X.
    Steinbach, O.
    NUMERISCHE MATHEMATIK, 2015, 129 (04) : 723 - 748
  • [32] ERROR ANALYSIS FOR A FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET BOUNDARY CONTROL PROBLEMS
    May, S.
    Rannacher, R.
    Vexler, B.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) : 2585 - 2611
  • [33] A convergent adaptive finite element method for elliptic Dirichlet boundary control problems
    Gong, Wei
    Liu, Wenbin
    Tan, Zhiyu
    Yan, Ningning
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1985 - 2015
  • [34] Robust Finite Element Discretization and Solvers for Distributed Elliptic Optimal Control Problems
    Langer, Ulrich
    Loescher, Richard
    Steinbach, Olaf
    Yang, Huidong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (04) : 989 - 1005
  • [35] Robust finite element discretization and solvers for distributed elliptic optimal control problems
    Langer, Ulrich
    Löscher, Richard
    Steinbach, Olaf
    Yang, Huidong
    arXiv, 2022,
  • [36] A stable nonconforming mixed finite element scheme for elliptic optimal control problems
    Guan, Hongbo
    Shi, Dongyang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (03) : 236 - 243
  • [37] Erratum to: A Stabilized Mixed Finite Element Method for Elliptic Optimal Control Problems
    Hongfei Fu
    Hongxing Rui
    Jian Hou
    Haihong Li
    Journal of Scientific Computing, 2016, 66 : 987 - 990
  • [38] Adaptive finite element method for elliptic optimal control problems: convergence and optimality
    Wei Gong
    Ningning Yan
    Numerische Mathematik, 2017, 135 : 1121 - 1170
  • [39] Robust error estimates for the finite element approximation of elliptic optimal control problems
    Gong, Wei
    Yan, Ningning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1370 - 1381
  • [40] Adaptive finite element method for elliptic optimal control problems: convergence and optimality
    Gong, Wei
    Yan, Ningning
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1121 - 1170