Branching random walks on quasi-transitive graphs

被引:13
|
作者
Stacey, A [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Stat Lab, Cambridge CB3 0WB, England
来源
COMBINATORICS PROBABILITY & COMPUTING | 2003年 / 12卷 / 03期
关键词
D O I
10.1017/S0963548302005588
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The branching random walk on a regular graph turns out to be particularly easy to analyse using results for the corresponding simple random walk. In this way, one can show that there is an intermediate phase of weak survival if and only if the graph is nonamenable. No such simple analysis holds more generally, and it is known that the nonamenability equivalence does not extend to general connected graphs of bounded degree (although we observe that it does hold for such graphs if the branching random walk is modified in a certain natural way). The most important general class of (bounded degree, connected) graphs for which it is thought that the equivalence may hold is that of quasi-transitive graphs: we show that this is indeed the case.
引用
收藏
页码:345 / 358
页数:14
相关论文
共 50 条
  • [21] Coalescing-branching random walks on graphs
    Twitter, San Francisco
    CA, United States
    不详
    TX
    77204, United States
    不详
    637371, Singapore
    不详
    RI
    02912, United States
    不详
    MA
    02115, United States
    ACM Trans. Parallel Comp., 3
  • [22] CRITICAL DENSITY OF ACTIVATED RANDOM WALKS ON TRANSITIVE GRAPHS
    Stauffer, Alexandre
    Taggi, Lorenzo
    ANNALS OF PROBABILITY, 2018, 46 (04): : 2190 - 2220
  • [23] Random walks on edge-transitive graphs (II)
    Palacios, JL
    Renom, JM
    Berrizbeitia, I
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (01) : 25 - 32
  • [24] Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs
    De Santis E.
    Lelli L.
    Journal of Statistical Physics, 190 (11)
  • [25] Quasi-transitive and Suzumura consistent relations
    Bossert, Walter
    Suzumura, Kotaro
    SOCIAL CHOICE AND WELFARE, 2012, 39 (2-3) : 323 - 334
  • [26] Restricted domination in Quasi-transitive and 3-Quasi-transitive digraphs
    Antonio Lopez-Ortiz, Marco
    Sanchez-Lopez, Rocio
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 352 - 364
  • [27] Quasi-transitive and Suzumura consistent relations
    Walter Bossert
    Kotaro Suzumura
    Social Choice and Welfare, 2012, 39 : 323 - 334
  • [28] Aggregating quasi-transitive preferences: a note
    Qin, Dan
    ECONOMICS BULLETIN, 2014, 34 (02): : 976 - 983
  • [29] TRANSITIVE MULTISTAGE MAJORITY DECISIONS WITH QUASI-TRANSITIVE INDIVIDUAL PREFERENCES
    BATRA, R
    PATTANAI.PK
    ECONOMETRICA, 1972, 40 (06) : 1121 - 1135
  • [30] Minimum cycle factors in quasi-transitive digraphs
    Bang-Jensen, Jorgen
    Nielsen, Morten Hegner
    DISCRETE OPTIMIZATION, 2008, 5 (01) : 121 - 137