Predicting process behaviour using deep learning

被引:245
|
作者
Evermann, Joerg [1 ]
Rehse, Jana-Rebecca [2 ,3 ]
Fettke, Peter [2 ,3 ]
机构
[1] Mem Univ Newfoundland, St John, NF, Canada
[2] German Res Ctr Artificial Intelligence, Saarbrucken, Germany
[3] Saarland Univ, Saarbrucken, Germany
关键词
Process management; Runtime support; Process prediction; Deep learning; Neural networks; NEURAL-NETWORKS; BUSINESS; MODELS; TIME;
D O I
10.1016/j.dss.2017.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting business process behaviour is an important aspect of business process management. Motivated by research in natural language processing, this paper describes an application of deep learning with recurrent neural networks to the problem of predicting the next event in a business process. This is both a novel method in process prediction, which has largely relied on explicit process models, and also a novel application of deep learning methods. The approach is evaluated on two real datasets and our results surpass the state-of-the-art in prediction precision. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 50 条
  • [31] Predicting Pavement Roughness Using Deep Learning Algorithms
    Zhou, Qingwen
    Okte, Egemen
    Al-Qadi, Imad L.
    TRANSPORTATION RESEARCH RECORD, 2021, 2675 (11) : 1062 - 1072
  • [32] Predicting demographics from meibography using deep learning
    Jiayun Wang
    Andrew D. Graham
    Stella X. Yu
    Meng C. Lin
    Scientific Reports, 12
  • [33] Predicting Dielectric Waveguides Characteristics Using Deep Learning
    Elsheikh, Omar E.
    Shaaban, Adel
    Arafa, A.
    Gad, Nasr
    Yahya, Ashraf
    Gomaa, Lotfy Rabeh
    Swillam, M.
    2022 PHOTONICS NORTH (PN), 2022,
  • [34] Predicting DNA structure using a deep learning method
    Li, Jinsen
    Chiu, Tsu-Pei
    Rohs, Remo
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [35] Predicting breast cancer recurrence using deep learning
    Kumari, Deepa
    Naidu, Mutyala Venkata Sai Subhash
    Panda, Subhrakanta
    Christopher, Jabez
    DISCOVER APPLIED SCIENCES, 2025, 7 (02)
  • [36] Predicting hydration layers on surfaces using deep learning
    Ranawat, Yashasvi S.
    Jaques, Ygor M.
    Foster, Adam S.
    NANOSCALE ADVANCES, 2021, 3 (12): : 3447 - 3453
  • [37] Predicting infrasound transmission loss using deep learning
    Brissaud, Quentin
    Nasholm, Sven Peter
    Turquet, Antoine
    Le Pichon, Alexis
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 232 (01) : 274 - 286
  • [38] Predicting Emotion in Movie Scripts Using Deep Learning
    Kim, Dong-Min
    Lee, Seong-Ho
    Cheong, Yun-Gyung
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 530 - 532
  • [39] Predicting Glaucoma before Onset Using Deep Learning
    Thakur, Anshul
    Goldbaum, Michael
    Yousefi, Siamak
    OPHTHALMOLOGY GLAUCOMA, 2020, 3 (04): : 262 - 268
  • [40] Feasibility of Deep Learning in Predicting Phenotype Conversion of REM Sleep Behaviour Disorder
    Lopes, L.
    Schafer, C.
    Ge, J.
    Lu, J.
    Wulf, M.
    Hong, J.
    Wu, J.
    Wang, J.
    Bassetti, C.
    Rominger, A.
    Yu, H.
    Wu, P.
    Zuo, C.
    Shi, K.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 308 - 309