共 50 条
Jordan all-derivable points in the algebra of all upper triangular matrices
被引:21
|作者:
Zhao, Sha
[1
]
Zhu, Jun
[1
]
机构:
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Jordan all-derivable point;
Nest algebra;
Jordan derivable linear mapping at G;
OPERATOR-ALGEBRAS;
NEST-ALGEBRAS;
LOCAL DERIVATIONS;
D O I:
10.1016/j.laa.2010.07.006
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let T M-n be the algebra of all n x n upper triangular matrices. We say that phi is an element of L(TMn) is a Jordan derivable mapping at G if phi (ST + TS) = phi(S)T + S phi(T) + phi(T)S + T phi(S) for any S, T is an element of TMn, with ST = G. An element G E TNI is called a Jordan all-derivable point of TMn if every Jordan derivable linear mapping phi at G is a derivation. In this paper, we show that every element in TMn is a Jordan all-derivable point. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1922 / 1938
页数:17
相关论文