Jordan all-derivable points in the algebra of all upper triangular matrices

被引:21
|
作者
Zhao, Sha [1 ]
Zhu, Jun [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Jordan all-derivable point; Nest algebra; Jordan derivable linear mapping at G; OPERATOR-ALGEBRAS; NEST-ALGEBRAS; LOCAL DERIVATIONS;
D O I
10.1016/j.laa.2010.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T M-n be the algebra of all n x n upper triangular matrices. We say that phi is an element of L(TMn) is a Jordan derivable mapping at G if phi (ST + TS) = phi(S)T + S phi(T) + phi(T)S + T phi(S) for any S, T is an element of TMn, with ST = G. An element G E TNI is called a Jordan all-derivable point of TMn if every Jordan derivable linear mapping phi at G is a derivation. In this paper, we show that every element in TMn is a Jordan all-derivable point. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1922 / 1938
页数:17
相关论文
共 50 条
  • [1] All-derivable points in the algebra of all upper triangular matrices
    Zhu, Jun
    Xiong, Changping
    Zhang, Renyuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (04) : 804 - 818
  • [2] Jordan higher all-derivable points in triangular algebras
    Zhao, Jinping
    Zhu, Jun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) : 3072 - 3086
  • [3] On Jordan all-derivable points of B(H)
    Jing, Wu
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 941 - 946
  • [4] All-derivable point in the algebra of operator matrices
    Wang, Sufang
    Tao, Rong
    FOURTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2012), 2012, 8334
  • [5] Jordan and Jordan higher all-derivable points of some algebras
    Li, Jiankui
    Pan, Zhidong
    Shen, Qihua
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 831 - 845
  • [6] JORDAN HIGHER ALL-DERIVABLE POINTS IN NEST ALGEBRAS
    Zhen, Nannan
    Zhu, Jun
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 1959 - 1970
  • [7] A Research of All-Derivable Points
    Wang, Sufang
    Xu, Chao
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT II, 2012, 7332 : 489 - 496
  • [8] Jordan higher all-derivable points on nontrivial nest algebras
    Zeng, Hongyan
    Zhu, Jun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (02) : 463 - 474
  • [9] All-derivable points in matrix algebras
    Zhu, Jun
    Xiong, Changping
    Zhang, Lin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2070 - 2079
  • [10] All-derivable points of operator algebras
    Zhu, Jun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (01) : 1 - 5